定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   
【答案】分析:可得:函數(shù)f(x)是遞減函數(shù).由函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,可得函數(shù)f(x)是奇函數(shù),再結(jié)合f(x2-2x)+f(2y-y2)≤0可得(x-y)(x+y-2)≥0(1≤x≤4),進而利用線性規(guī)劃的知識解決問題.
解答:解:因為對任意不等實數(shù)x1,x2滿足
所以函數(shù)f(x)是定義在R上的單調(diào)遞減函數(shù).
因為函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,
所以函數(shù)y=f(x)的圖象關(guān)于點(0,0)對稱,即函數(shù)f(x)是定義在R上的奇函數(shù).
又因為對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立,
所以f(x2-2x)≥f(-2y+y2)成立,
所以根據(jù)函數(shù)的單調(diào)性可得:對于任意的x,y∈R,不等式x2-2x≥y2-2y成立,即(x-y)(x+y-2)≥0(1≤x≤4),
所以可得其可行域,如圖所示:

因為=,
所以表示點(x,y)與點(0,0)連線的斜率,
所以結(jié)合圖象可得:的最小值是直線OC的斜率-,最大值是直線AB的斜率1,
所以的范圍為:[-,1].
故答案為:[-,1].
點評:解決此類問題的關(guān)鍵是熟練掌握抽象函數(shù)的性質(zhì)的證明與判斷,如單調(diào)性、奇偶性的證明與判斷,并且熟練的利用函數(shù)的性質(zhì)解有關(guān)的不等式,以及熟練掌握線性規(guī)劃問題,此題綜合性較強知識點也比較零散,對學(xué)生掌握知識與運用知識的能力有一定的要求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當x∈[-1,1]時,f(x)=x3,則f(2009)的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、定義在R上的函數(shù)y=f(x)滿足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,則f(508)=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題:
①“a>b”是“2a>2b”成立的充要條件;
②“a=b”是“l(fā)ga=lgb”成立的充分不必要條件;
③函數(shù)f(x)=ax2+bx(x∈R)為奇函數(shù)的充要條件是“a=0”
④定義在R上的函數(shù)y=f(x)是偶函數(shù)的必要條件是
f(-x)f(x)
=1”

其中真命題的序號是
①③
①③
.(把真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當x∈[-1,1]時,f(x)=x3,則f(2011)=
-1
-1

查看答案和解析>>

同步練習(xí)冊答案