【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60個組合,稱六十甲子,周而復始,無窮無盡。2019年是“干支紀年法”中的己亥年,那么2026年是“干支紀年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

【答案】C

【解析】

按照題中規(guī)則依次從年列舉到年,可得出答案。

根據(jù)規(guī)則,年是己亥年,年是庚子年,年是辛丑年,年是壬寅年,年是癸卯年,年是甲辰年,年是乙巳年,年是丙午年,故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假:

1)一次函數(shù)是非零常數(shù))的圖象一定經(jīng)過點

2)直角三角形的外心一定在斜邊上;

3)已知,則的充要條件;

4)如果都能被5整除,則也能被5整除.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

時,討論的導函數(shù)在區(qū)間上零點的個數(shù);

時,函數(shù)的圖象恒在圖象上方,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程與曲線直角坐標方程;

(2)設(shè)為曲線上的動點,求點上點的距離的最小值,并求此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD平面ABCD,∠DPC=30°,AFPC于點F,FECD,交PD于點E.

(1)證明:CF⊥平面ADF;

(2)求二面角DAFE的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次文藝晚會上共演出7個節(jié)目,其中2個歌曲,3個舞蹈,2個曲藝節(jié)目,求分別滿足下列條件的節(jié)自編排方法有多少種?(用數(shù)字作答)

(1)一個歌曲節(jié)目開頭,另個歌曲節(jié)目放在最后壓臺;

(2)2個歌曲節(jié)目相鄰且2個曲藝節(jié)目不相鄰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市現(xiàn)有人口總數(shù)為100萬人,如果年自然增長率為 試回答下面的問題:

1)寫出該城市人口總數(shù)(萬人)與年份(年)的函數(shù)關(guān)系式;

2)計算10年以后該城市人口總數(shù)(精確度為0.1萬人);

3)計算大約多少年以后該城市人口總數(shù)將達到120萬人(精確度為1年).

(提示:;

查看答案和解析>>

同步練習冊答案