【題目】設(shè)等比數(shù)列{an}的公比q,前n項(xiàng)和為Sn . 若S3 , S2 , S4成等差數(shù)列,則實(shí)數(shù)q的值為

【答案】-2
【解析】解:∵S3 , S2 , S4成等差數(shù)列,∴2S2=S3+S4 , ∴2a3+a4=0, 可得q=﹣2.
故答案為:﹣2.
S3 , S2 , S4成等差數(shù)列,可得2S2=S3+S4 , 化為2a3+a4=0,即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓷l異面直線在一個(gè)平面上的射影一定是(
A.兩條相交直線
B.兩條平行直線
C.一條直線和直線外一點(diǎn)
D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是( ) ①函數(shù)關(guān)系是一種確定性關(guān)系;
②相關(guān)關(guān)系是一種非確定性關(guān)系;
③回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種方法;
④回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.
A.①②
B.①②③
C.①②④
D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年4月4日,中國(guó)詩(shī)詞大會(huì)第三季總決賽如期舉行,依據(jù)規(guī)則,本場(chǎng)比賽共有甲、乙、丙、丁、戊五位選手有機(jī)會(huì)問(wèn)鼎冠軍,某家庭中三名詩(shī)詞愛(ài)好者依據(jù)選手在之前比賽中的表現(xiàn),結(jié)合自己的判斷,對(duì)本場(chǎng)比賽的冠軍進(jìn)行了如下猜測(cè):

爸爸:冠軍是甲或丙;媽媽:冠軍一定不是乙和丙;孩子:冠軍是丁或戊.

比賽結(jié)束后發(fā)現(xiàn):三人中只有一個(gè)人的猜測(cè)是對(duì)的,那么冠軍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)要考察某公司生產(chǎn)的500克袋裝牛奶的三聚青氨是否超標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),先將800袋牛奶按000,001,…,799進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第7行第8列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的5袋牛奶的編號(hào)(下面摘取了隨機(jī)數(shù)表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列給出的賦值語(yǔ)句中正確的是(
A.3=A
B.M=﹣M
C.B=A=2
D.x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=lnx,那么,f(﹣e2)=(
A.﹣2
B.2
C.1
D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的個(gè)數(shù)有(
①兩平面平行,夾在兩平面間的平行線段相等;
②兩平面平行,夾在兩平面間的相等的線段平行;
③兩條直線被三個(gè)平行平面所截,截得的線段對(duì)應(yīng)成比例;
④如果夾在兩平面間的三條平行線段相等,那么這兩個(gè)平面平行.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題P:x0∈R,x02+2x0+2≤0,則¬p是(
A.x0∈R,x02+2x0+2>0
B.x∈R,x2+2x+2≤0
C.x∈R,x2+2x+2>0
D.x∈R,x2+2x+2≥0

查看答案和解析>>

同步練習(xí)冊(cè)答案