17.如果偶函數(shù)在[a,b]具有最大值,那么該函數(shù)在[-b.-a]有(  )
A.最大值B.最小值C.沒有最大值D.沒有最小值

分析 利用函數(shù)f(x)為偶函數(shù),可得偶函數(shù)的圖象關(guān)于y軸對稱,從而可得結(jié)論.

解答 解:∵偶函數(shù)在[a,b]具有最大值,
∴該函數(shù)在[-b,-a]有最大值,
故選:A.

點評 本題考查函數(shù)的奇偶性,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過拋物線y2=-4x的焦點作直線交拋物線于A(x1,y1),B(x2,y2),若x1+x2=-6,則|AB|為( 。
A.8B.10C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知各項都不相等的等差數(shù)列{an},a6=6,又a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2${\;}^{{a}_{n}}$+2n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,設(shè)a=2,b=3,c=4.
(Ⅰ)求cosC的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2-(a+4)x+4.
(1)若對任意的x∈(0,1],都有f(x)>(a-1)x2恒成立,求實數(shù)a的取值范圍;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在區(qū)間[-1,3]內(nèi)任取一個實數(shù)x滿足log2(x-1)>0的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$f(x)={x^3}+{log_2}(x+\sqrt{{x^2}+1})$,則對任意實數(shù)a、b,若a+b≥0則(  )
A.f(a)+f(b)≤0B.f(a)+f(b)≥0C.f(a)-f(b)≤0D.f(a)-f(b)≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項和為Sn,a1=1,滿足$\overrightarrow a=({S_{n+1}}-2{S_n},{S_n})$,$\overrightarrow b=(2,n)$,$\overrightarrow a∥\overrightarrow b$.
(1)求證:數(shù)列$\{\frac{S_n}{n}\}$為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案