【題目】下列有關(guān)命題的說法中錯誤的是( )
A.若p∧q為假命題,則p、q均為假命題
B.“x=1”是“x2﹣3x+2=0”的充分不必要條件
C.命題“若x2﹣3+2=0,則x=1“的逆否命題為:“若x≠1,則x2﹣3x+2≠0”
D.對于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1≥0
【答案】A
【解析】解:對于選項(xiàng)A,由命題p∧q為假命題可知命題p和命題p至少有一個為假,命題p、q均為假命題錯誤,所以選則A項(xiàng).
對于B項(xiàng),x=1x2﹣3x+2=0,但是x2﹣3x+2=0≠>x=1故“x=1”是“x2﹣3x+2=0”的充分不必要條件,判斷對.
對于C項(xiàng),由逆否命題的概念可知C項(xiàng)中的命題是真命題,判斷對,
對于D項(xiàng),有特稱命題的否定是全稱命題可知選項(xiàng)D中的命題的否命題是p:x∈R,均有x2+x+1≥0,推理對.
故選:A
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x)=x2+2x,在使f(x)≥M成立的所有實(shí)數(shù)M中,我們把M的最大值Mmax叫做函數(shù)f(x)=x2+2x的下確界,則對于a∈R,且a≠0,a2﹣4a+6的下確界為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品的總利潤y(單位:萬元)與總產(chǎn)量x(單位:件)的函數(shù)解析式為y=0.1x﹣150,若公司想不虧損,則總產(chǎn)量x至少為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)A類課3門,B類課5門,一位同學(xué)從中共選3門,若要求兩類課程中各至少選一門,則不同的選法共有
( )
A.15種
B.30種
C.45種
D.90種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條互不重合的直線m,n,兩個不同的平面α,β,下列命題中正確的是( 。
A.若m∥α,n∥β,且m∥n,則α∥β
B.若m⊥α,n∥β,且m⊥n,則α⊥β
C.若m⊥α,n∥β,且m∥n,則α∥β
D.若m⊥α,n⊥β,且m⊥n,則α⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2x>1},B={x|log2x<0},則AB=( )
A.(0,1)
B.(0,1]
C.(1,+∞)
D.[1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com