精英家教網 > 高中數學 > 題目詳情

已知f(x)=x2+ax+3-a,若當x∈[-2,2]時,f(x)≥0恒成立,求a的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某地上年度電價為0.8元,年用電量為1億千瓦時.本年度計劃將電價調至0.55元~0.75元之間,經測算,若電價調至元,則本年度新增用電量(億千瓦時)與元成反比例.又當時,
(1)求之間的函數關系式;
(2)若每千瓦時電的成本價為0.3元,則電價調至多少時,本年度電力部門的收益將比上年增加20%?[收益用電量(實際電價-成本價)]

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

求證:二次函數的圖象與軸交于的充要條件為

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為米,高為米,體積為立方米.假設建造成本僅與表面積有關,側面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為元(為圓周率).
(1)將表示成的函數,并求該函數的定義域;
(2)討論函數的單調性,并確定為何值時該蓄水池的體積最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2x,g(x)=+2.
(1)求函數g(x)的值域;
(2)求滿足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=lnx+a,其中a為大于零的常數.
(1)若函數f(x)在區(qū)間[1,+∞)內單調遞增,求實數a的取值范圍.
(2)求證:對于任意的n∈N*,且n>1時,都有l(wèi)nn>++…+恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知關于x的一元二次函數
(1)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為,
求函數在區(qū)間[上是增函數的概率;
(2)設點(,)是區(qū)域內的隨機點,求函數上是增函數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知不等式x2-logax<0,當x∈(0,)時恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設a>0且a≠1,函數y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.

查看答案和解析>>

同步練習冊答案