【題目】已知橢圓的中心在原點(diǎn),其中一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)橢圓的左右焦點(diǎn)分別為,過(guò)的直線與橢圓相交于兩點(diǎn),若的面積為,求以為圓心且與直線相切的圓的方程.
【答案】(1) ;(2) .
【解析】試題分析:(1)求出的焦點(diǎn)坐標(biāo)為,,設(shè)橢圓的方程為通過(guò),又點(diǎn)在橢圓上,列出方程組求解橢圓的方程.
(2)設(shè)直線的方程為,由得
由,
設(shè),利用韋達(dá)定理,弦長(zhǎng)公式點(diǎn)到直線的距離公式表示三角形的面積,求解,然后求解圓的方程.
試題解析:由題意, 的焦點(diǎn)坐標(biāo)為,
故設(shè)橢圓的方程為且,
又點(diǎn)在橢圓上,于是
(2)設(shè)直線的方程為,
由得
由
設(shè),其中就是上述方程的兩個(gè)根,
所以
點(diǎn)到直線的距離為
所以
解得
設(shè)欲求圓的半徑為
所以,此圓方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種水果按照肉質(zhì)和口感可分為四類:標(biāo)準(zhǔn)果,優(yōu)質(zhì)果,精品果,禮品果,某采購(gòu)商從采購(gòu)的一批水果中隨機(jī)抽取100個(gè)(每個(gè)水果的重量相當(dāng)),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個(gè)數(shù) | 10 | 30 | 40 | 20 |
(1)用樣本估計(jì)總體,果園老板提出兩種購(gòu)銷方案給采購(gòu)商參考:
方案①:不分類賣出,單價(jià)為20元/.
方案②:分類賣出,分類后的水果售價(jià)如下表:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(jià)(元/) | 16 | 18 | 22 | 24 |
從采購(gòu)商的角度考慮,應(yīng)該采用哪種方案較好?并說(shuō)明理由.
(2)從這100個(gè)水果中用分層抽樣的方法抽取10個(gè),再?gòu)某槿〉?/span>10個(gè)水果中隨機(jī)抽取2個(gè),求抽取的2個(gè)水果不是同一級(jí)別水果的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù)且.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),,若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了考核甲,乙兩部門(mén)的工作情況,隨機(jī)訪問(wèn)了50位市民,根據(jù)這50位市民對(duì)這兩部門(mén)的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越高),繪制莖葉圖如下:
(1)分別估計(jì)該市的市民對(duì)甲,乙兩部門(mén)評(píng)分的中位數(shù);
(2)分別估計(jì)該市的市民對(duì)甲,乙兩部門(mén)的評(píng)分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對(duì)甲,乙兩部門(mén)的評(píng)價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司近年來(lái)特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬(wàn)元)對(duì)年創(chuàng)新產(chǎn)品銷售額(單位:十萬(wàn)元)的影響,對(duì)近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷售額(其中)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
其中,,,,
.現(xiàn)擬定關(guān)于的回歸方程為.
(1)求,的值(結(jié)果精確到);
(2)根據(jù)擬定的回歸方程,預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為萬(wàn)元時(shí),年創(chuàng)新產(chǎn)品銷售額是多少?
參考公式:
求線性回歸方程系數(shù)公式 :,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某地村莊P與村莊O的距離為千米,從村莊O出發(fā)有兩條道路,經(jīng)測(cè)量,的夾角為,OP與的夾角滿足(其中),現(xiàn)要經(jīng)過(guò)P修一條直路分別與道路交匯于兩點(diǎn),并在處設(shè)立公共設(shè)施.
(1)已知修建道路的單位造價(jià)分別為2m元/千米和m元/千米,若兩段道路的總造價(jià)相等,求此時(shí)點(diǎn)之間的距離;
(2)考慮環(huán)境因素,需要對(duì)段道路進(jìn)行翻修,段的翻修單價(jià)分別為n元/千米和元/千米,要使兩段道路的翻修總價(jià)最少,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,為邊的中點(diǎn),將沿直線翻轉(zhuǎn)為.若為線段的中點(diǎn),則在翻轉(zhuǎn)過(guò)程中,有下列命題:
①是定值;
②點(diǎn)在圓上運(yùn)動(dòng);
③一定存在某個(gè)位置,使;
④若平面,則平面.
其中正確的個(gè)數(shù)為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】流行性感冒多由病毒引起,據(jù)調(diào)查,空氣相對(duì)濕度過(guò)大或過(guò)小時(shí),都有利于一些病毒的繁殖和傳播.科學(xué)測(cè)定,當(dāng)空氣相對(duì)濕度大于65%或小于40%時(shí),病毒繁殖滋生較快,當(dāng)空氣相對(duì)濕度在45%—55%時(shí),病毒死亡較快,現(xiàn)隨機(jī)抽取了全國(guó)部分城市,獲得了它們的空氣月平均相對(duì)濕度共300個(gè)數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表,其中為了記錄方便,將空氣相對(duì)濕度在%~%時(shí)記為區(qū)間.
(I)求上述數(shù)據(jù)中空氣相對(duì)濕度使病毒死亡較快的頻率;
(Ⅱ)從區(qū)間[ 15,35)的數(shù)據(jù)中任取兩個(gè)數(shù)據(jù),求恰有一個(gè)數(shù)據(jù)位于[25,35)的概率;
(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中空氣月平均相對(duì)濕度的平均數(shù)在第幾組(只需寫(xiě)出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=A cos(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,下面結(jié)論錯(cuò)誤的是( )
A. 函數(shù)f(x)的最小正周期為
B. 函數(shù)f(x)的圖象可由g(x)=Acos ωx的圖象向右平移個(gè)單位長(zhǎng)度得到
C. 函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱
D. 函數(shù)f(x)在區(qū)間上單調(diào)遞增
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com