精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ln(x+1)+mx,當x=0時,函數f(x)取得極大值.
(1)求實數m的值;
(2)已知結論:若函數f(x)=ln(x+1)+mx在區(qū)間(a,b)內導數都存在,且a>-1,則存在x∈(a,b),使得.試用這個結論證明:若-1<x1<x2,函數,則對任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正數λ1,λ2,…,λn,滿足λ12+…+λn=1,求證:當n≥2,n∈N時,對任意大于-1,且互不相等的實數x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).
【答案】分析:(1)求導函數,利用當x=0時,函數f(x)取得極大值,即可求得實數m的值;
(2)令,則,根據函數f(x)在x∈(x1,x2)上可導,可得存在x∈(x1,x2),使得,從而,進而可得h(x)>0;
(3)用數學歸納法證明,先證明當n=2時,結論成立;再證明假設當n=k(k≥2)時結論成立,利用歸納假設證明當n=k+1時,結論也成立.
解答:(1)解:求導函數
∵當x=0時,函數f(x)取得極大值
∴f'(0)=0,得m=-1,此時
當x∈(-1,0)時,f'(x)>0,函數f(x)在區(qū)間(-1,0)上單調遞增;
當x∈(0,+∞)時,f'(x)<0,函數f(x)在區(qū)間(0,+∞)上單調遞減.
∴函數f(x)在x=0處取得極大值,故m=-1.…(3分)
(2)證明:令,…(4分)

∵函數f(x)在x∈(x1,x2)上可導,
∴存在x∈(x1,x2),使得
,

∵當x∈(x1,x)時,h'(x)>0,h(x)單調遞增,∴h(x)>h(x1)=0;
∵當x∈(x,x2)時,h'(x)<0,h(x)單調遞減,∴h(x)>h(x2)=0;
故對任意x∈(x1,x2),都有f(x)>g(x).…(8分)
(3)證明:用數學歸納法證明.
①當n=2時,∵λ12=1,且λ1>0,λ2>0,∴λ1x12x2∈(x1,x2),∴由(Ⅱ)得f(x)>g(x),

∴當n=2時,結論成立.…(9分)
②假設當n=k(k≥2)時結論成立,即當λ12+…+λk=1時,f(λ1x12x2+…+λkxk)>λ1f(x1)+λ2f(x2)+…+λkf(xk).
當n=k+1時,設正數λ1,λ2,…,λk+1滿足λ12+…+λk+1=1,
令m=λ12+…+λk,,則m+λk+1n=1,且μ12+…+μk=1.
f(λ1x12x2+…+λkxkk+1xk+1)=f[m(μ1x1+…+μkxk)+λk+1xk+1]>mf(μ1x1+…+μkxk)+λk+1f(xk+1)>mμ1f(x1)+…+mμkf(xk)+λk+1f(xk+1)=λ1f(x1)+…+λkf(xk)+λk+1f(xk+1)…(13分)
∴當n=k+1時,結論也成立.
綜上由①②,對任意n≥2,n∈N,結論恒成立.…(14分)
點評:本題考查導數知識的運用,考查數學歸納法證明不等式,解題的關鍵是利用函數的極值點處導數為0,利用數學歸納法的證題步驟進行證明,綜合性強.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區(qū)間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案