若函數(shù)f(x)滿足數(shù)學(xué)公式,當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間(-1,1]上,g(x)=f(x)-mx-m有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    (0,1)
  4. D.
    數(shù)學(xué)公式
D
分析:根據(jù)函數(shù)f(x)滿足,當(dāng)x∈[0,1]時(shí),f(x)=x,求出x∈(-1,0)時(shí),f(x)的解析式,由在區(qū)間(-1,1]上,g(x)=f(x)-mx-m有兩個(gè)零點(diǎn),
轉(zhuǎn)化為兩函數(shù)圖象的交點(diǎn),利用圖象直接的結(jié)論.
解答:函數(shù)f(x)滿足,當(dāng)x∈[0,1]時(shí),f(x)=x,
∴x∈(-1,0)時(shí),f(x)+1==,f(x)=
因?yàn)間(x)=f(x)-mx-m有兩個(gè)零點(diǎn),
所以y=f(x)與y=mx+m的圖象有兩個(gè)交點(diǎn),
函數(shù)圖象如圖所示,由圖象可得,當(dāng)0<m≤時(shí),兩函數(shù)有兩個(gè)交點(diǎn),
故選 D.
點(diǎn)評(píng):此題是個(gè)中檔題.本題考查了利用函數(shù)零點(diǎn)的存在性求變量的取值范圍和代入法求函數(shù)解析式,體現(xiàn)了轉(zhuǎn)化的思想,以及利用函數(shù)圖象解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的思想.也考查了學(xué)生創(chuàng)造性分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(ωx+φ)(ω>0,|φ|<
π
2
)
在同一個(gè)周期內(nèi),當(dāng)x=
π
4
時(shí)y取最大值1,當(dāng)x=
12
時(shí),y取最小值-1.
(1)求函數(shù)的解析式y(tǒng)=f(x).
(2)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y(tǒng)=f(x)的圖象?
(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sinxcosx-
3
2
cos2x,(x∈R)

(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)f(x)滿足f(x+m)=f(m-x),試求實(shí)數(shù)m的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足f(
1
x
)=-f(x)
,則稱f(x)為倒負(fù)變換函數(shù).下列函數(shù):
y=x-
1
x
;②y=x+
1
x
;③f(x)=
-x, 0<x<1
0, x=1
x-1, x>1
中為倒負(fù)變換函數(shù)的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足f(x+3)=x,f-1(x)的定義域?yàn)閇1,4],則f(x)的定義域?yàn)、(  ?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)若函數(shù)f(x)滿足f(x+10)=2f(x+9),且f(0)=1,則f(10)=
210
210
_.

查看答案和解析>>

同步練習(xí)冊(cè)答案