如圖,有一塊邊長(zhǎng)為1(百米)的正方形區(qū)域ABCD,在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P、Q分別在邊BC、CD上),設(shè)∠PAB=θ,tanθ=t,探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S(平方百米).
(1)將S表示成t的函數(shù);
(2)求S的最大值.
分析:(1)利用已知條件,結(jié)合直角三角形,直接用t表示出DQ的長(zhǎng)度,然后利用S=S正方形ABCD-S△ABP-S△ADQ,推出探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S.
(2)利用(1)推出探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S,利用基本不等式求出面積的最小值(平方百米).
解答:解:(1)由題意知BP=t,0≤t≤1,…(2分)
∠DAQ=45°-θ,
DQ=tan(450-θ)=
1-t
1+t
…(4分)
S=S正方形ABCD-S△ABP-S△ADQ
=1-
1
2
t-
1
2
1-t
1+t
   =2-
1
2
(t+1+
2
t+1
)

其中t∈[0,1]…(8分)
(2)  S=2-
1
2
(t+1+
2
t+1
),t∈[0,1]
≤2-
2
當(dāng)且僅當(dāng)t=
2
-1時(shí)取等號(hào).
…(12分)
探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S最大值為2-
2
(平方百米) …(14分)
點(diǎn)評(píng):本題考查三角形的實(shí)際應(yīng)用,函數(shù)值的求法,基本不等式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有一塊邊長(zhǎng)為1(百米)的正方形區(qū)域ABCD,在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P,Q分別在邊BC,CD上),設(shè)∠PAB=θ,tanθ=t.
(1)用t表示出PQ的長(zhǎng)度,并探求△CPQ的周長(zhǎng)l是否為定值.
(2)問探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S至多為多少(平方百米)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市十三校高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,有一塊邊長(zhǎng)為1(百米)的正方形區(qū)域ABCD,在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P,Q分別在邊BC,CD上),設(shè)∠PAB=θ,tanθ=t.
(1)用t表示出PQ的長(zhǎng)度,并探求△CPQ的周長(zhǎng)l是否為定值.
(2)問探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S至多為多少(平方百米)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇州市張家港市梁豐高級(jí)中學(xué)高三(上)周日數(shù)學(xué)試卷(8)(解析版) 題型:解答題

如圖,有一塊邊長(zhǎng)為1(百米)的正方形區(qū)域ABCD,在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P,Q分別在邊BC,CD上),設(shè)∠PAB=θ,tanθ=t.
(1)用t表示出PQ的長(zhǎng)度,并探求△CPQ的周長(zhǎng)l是否為定值.
(2)問探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S至多為多少(平方百米)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

如圖,有一塊邊長(zhǎng)為1(百米)的正方形區(qū)域ABCD,在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P、Q分別在邊BC、CD上),設(shè)∠PAB=θ,tanθ=t,探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S(平方百米).
(1)將S表示成t的函數(shù);
(2)求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案