a,b,c為實(shí)數(shù),且a=b+c+1.證明:兩個(gè)一元二次方程x2+x+b=0,x2+ax+c=0中至少有一個(gè)方程有兩個(gè)不相等的實(shí)數(shù)根.
假設(shè)兩個(gè)方程都沒有兩個(gè)不等的實(shí)數(shù)根,則
Δ1=1-4b≤0,Δ2=a2-4c≤0,∴Δ1+Δ2=1-4b+a2-4c≤0.
∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a2≤0,
即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.
所以假設(shè)不成立,原命題正確,即兩個(gè)方程中至少有一個(gè)方程有兩個(gè)不相等的實(shí)數(shù)根
證明 假設(shè)兩個(gè)方程都沒有兩個(gè)不等的實(shí)數(shù)根,則
Δ1=1-4b≤0,Δ2=a2-4c≤0,∴Δ1+Δ2=1-4b+a2-4c≤0.
∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a2≤0,
即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.
所以假設(shè)不成立,原命題正確,即兩個(gè)方程中至少有一個(gè)方程有兩個(gè)不相等的實(shí)數(shù)根.