【題目】已知橢圓過點,且離心率為

1)求橢圓的方程;

2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.

【答案】(1)(2)見解析

【解析】

1)利用橢圓過點,以及離心率為,求出,即可得到橢圓方程.

2)設直線方程為,則,求得,當直線斜率存在時,設直線方程為:,與橢圓方程聯(lián)立方程組,利用韋達定理以及,得到的關系,代入直線的方程,即可求解.

1)由題意,橢圓過點,即,解得,

由離心率為,又由,解得,所求橢圓方程為:.

2)當直線斜率不存在時,設直線方程為,則,

,所以,解得

當直線斜率存在時,設直線方程為

聯(lián)立方程組,得

,則 *),

,

*式代入化簡可得:,即,整理得

代入直線方程,得

,聯(lián)立方程組,解得,

恒過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著社會的發(fā)展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).

(1)問類、類工人各抽查了多少工人,并求出直方圖中的

(2)求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產(chǎn)能力與培訓時間長短有關.能力與培訓時間列聯(lián)表

短期培訓

長期培訓

合計

能力優(yōu)秀

能力不優(yōu)秀

合計

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐中,側面底面,則三棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調(diào),求的取值范圍;

(2)設,分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位: ) 組成一個樣本,且將纖維長度超過315的棉花定為一級棉花.設計了如下莖葉圖:

(1)根據(jù)以上莖葉圖,對甲、乙兩種棉花的纖維長度作比較,寫出兩個統(tǒng)計結論(不必計算);

(2)從樣本中隨機抽取甲、乙兩種棉花各2根,求其中恰有3根一級棉花的概率;

(3)用樣本估計總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機抽取1根,求其中一級棉花根數(shù)X的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)當時,求證:;

2)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1,E,F(xiàn),P,Q分別是BC,C1D1,AD1,BD的中點,求證:

(1)PQ平面DCC1D1

(2)EF平面BB1D1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)的最小值為-1,,數(shù)列滿足,記表示不超過的最大整數(shù).證明:

查看答案和解析>>

同步練習冊答案