(2011•靜?h一模)在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=
2
,b=2,sinB-cosB=
2
,則角A的大小為
π
6
π
6
分析:直接利用sinB-cosB=
2
,通過兩角差的正弦函數(shù)化為一個角的一個三角函數(shù)的形式,利用正弦定理求出A的大。
解答:解:因為sinB-cosB=
2
,所以
2
sin(B-
π
4
) =
2
,所以B-
π
4
=
π
2
,
∴B=
4
,
由正弦定理,sinA=
asinB
b
=
1
2
,所以A=
π
6

故答案為:
π
6
點評:本題考查解三角形,三角函數(shù)中的恒等變換應(yīng)用,正弦定理的應(yīng)用,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•靜?h一模)已知
OB
=(2,0), 
OC
=(2,2), 
CA
=(2,1)
,則
OA
OB
夾角的正弦值為
3
5
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•靜?h一模)已知正項數(shù)列{an}的前n項和為Sn,
Sn
1
4
(an+1)2的等比中項.
(Ⅰ)求證:數(shù)列{an}是等差數(shù)列;
(Ⅱ)若b1=a1,且bn=2bn-1+3,求數(shù)列{bn}的通項公式;
(Ⅲ)在(Ⅱ)的條件下,若cn=
an
bn+3
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•靜?h一模)已知函數(shù)f(x)=
x2+1 (x≥0)
1 (x<0)
則滿足不等式f(1-x2)>f(2x)的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•靜?h一模)在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=
2
,b=2,sinB+cosB=
2
,則角A的大小為( 。

查看答案和解析>>

同步練習冊答案