已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線lAB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.
(1)x∈(0,e)時,f(x)=x2+2(1-lnx),f(x)=2x-
2
x
=
2(x2-1)
x

令f′(x)>0得x∈(1,e);f′(x)<0得x∈(0,1).
∴f′(x)在(0,1]上單減,在[1,e)上單增;
x∈[e,+∞)時,f(x)=x2+2(lnx-1),f(x)=2x+
2
x
>0對x∈[e,+∞)恒成立

∴f(x)在[e,+∞)單調遞增.
故f(x)min=f(1)=3.
(2)由lnx≥
2(x-1)
x+1
=2-
4
x+1
?
lnx+
4
x+1
≥2

g(x)=lnx+
4
x+1
(x≥1)
,
則g′(x)=
1
x
-
4
(x+1)2
=
(x-1)2
x(x+1)2

因為x≥1,顯然g'(x)≥0,所以g(x)在[1,+∞)上遞增,
顯然有g(x)≥g(1)=2恒成立.(當且僅當x=1時等號成立),即證.
(3)當x≥e時,f(x)=x2+2(lnx-1),f(x)=2x+
2
x
,假設函數(shù)f(x)存在“中值伴侶切線”.
設A(x1,y1),B(x2,y2)是曲線y=f(x)上的不同兩點,且0<x1<x2
y1=x12+2(lnx1-1),y2=x22+2(lnx2-1)
故直線AB的斜率:kAB=
y1-y2
x1-x2
=
[x12+2(lnx1-1)]-[x22+2(lnx2-1)]
x1-x2
=(x1+x2)+2•
lnx1-lnx2
x1-x2

曲線在點M(x0,y0)處的切線斜率:
k=f′(x0)=f(
x1+x2
2
)
=(x1+x2)+
4
x1+x2

依題意得:(x1+x2)+2•
lnx1-lnx2
x1-x2
=(x1+x2)+
4
x1+x2

化簡可得:
lnx2-lnx1
x2-x1
=
2
x1+x2
,即ln
x2
x1
=
2(x2-x1)
x2+x1
=
2(
x2
x1
-1)
x2
x1
+1

x2
x1
=t(t>1)
,上式化為由lnt=
2(t-1)
t+1
,由(2)知t>1時,lnt+
4
t+1
>2
恒成立.
所以在(1,+∞)內不存在t,使得lnt+
4
t+1
=2
成立.
綜上所述,假設不成立.所以,函數(shù)f(x)不存在“中值伴侶切線”.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)=x3+ax2+ax(x∈R)不存在極值點,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=lnx在點(1,0)處的切線與坐標軸圍成的三角形的面積是(  )
A.
3
4
B.
4
5
C.
1
4
D.
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如果函數(shù)f(x)在x=x0處取得極值,則點(x0,f(x0))稱為函數(shù)f(x)的一個極值點.已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d∈R)的一個極值點恰為坐標系原點,且y=f(x)在x=1處的切線方程為3x+y-1=0.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設M,m分別是函數(shù)f(x)在[a,b]上的最大值和最小值,若M=m,則f′(x)( 。
A.等于0B.小于0C.等于1D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1+lnx
x

(1)設a>0,若函數(shù)f(x)在區(qū)間(a,a+
1
2
)上存在極值,求實數(shù)a的取值范圍;
(2)如果當x≥1時,不等式f(x)≥
k2-k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx-
a
x

(Ⅰ)若a>0,試判斷f(x)在定義域內的單調性;
(Ⅱ)若f(x)在[1,e]上的最小值為
3
2
,求a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

用半徑為R的圓形鐵皮剪出一個圓心角為α的扇形,制成一個圓錐形容器,求:扇形的圓心角多大時,容器的容積最大?并求出此時容器的最大容積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=九x2+lnx.
(Ⅰ)當九=-1時,求函數(shù)y=f(x)的7象在點(1,f(1))處的切線方程;
(Ⅱ)已知九<0,若函數(shù)y=f(x)的7象總在直線y=-
1
2
的下方,求九的取值范圍.

查看答案和解析>>

同步練習冊答案