9.在空間四邊形ABCD中,H,G分別是AD,CD的中點(diǎn),E,F(xiàn)分別邊AB,BC上的點(diǎn),且$\frac{CF}{FB}$=$\frac{AE}{EB}$=$\frac{1}{3}$.求證:
①點(diǎn)E,F(xiàn),G,H四點(diǎn)共面;
②直線EH,BD,F(xiàn)G相交于一點(diǎn).

分析 ①利用三角形的中位線平行于第三邊和平行線分線段成比例定理,
得到EF、GH都平行于AC,由平行線的傳遞性得到EF∥GH,
根據(jù)兩平行線確定一平面得出證明;
(2)利用分別在兩個(gè)平面內(nèi)的點(diǎn)在這兩個(gè)平面的交線上,即可證明.

解答 證明:①如圖所示,

空間四邊形ABCD中,H,G分別是AD,CD的中點(diǎn),
∴HG∥AC;
又$\frac{CF}{FB}$=$\frac{AE}{EB}$=$\frac{1}{3}$,
∴EF∥AC,
∴EF∥HG,
E、F、G、H四點(diǎn)共面;
②設(shè)EH與FG交于點(diǎn)P,
∵EH?平面ABD
∴P在平面ABD內(nèi),
同理P在平面BCD內(nèi),
且平面ABD∩平面BCD=BD,
∴點(diǎn)P在直線BD上,
∴直線EH,BD,F(xiàn)G相交于一點(diǎn).

點(diǎn)評 本題考查了三角形的中位線性質(zhì)、平行線分線段成比例定理、直線的平行性的傳遞性、確定平面的條件以及三線共點(diǎn)的應(yīng)用問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.參數(shù)方程$\left\{\begin{array}{l}x=-1+2cosθ\\ y=2+2sinθ\end{array}\right.$(θ為參數(shù)0≤θ<2π)所表示的曲線的普通方程是(x+1)2+(y-2)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如果一個(gè)幾何體的三視圖如圖所示,正視圖與側(cè)視圖是邊長為2的正三角形、俯視圖輪廓為正方形,(單位長度:cm),則此幾何體的側(cè)面積是( 。
A..$2\sqrt{3}$cmB..$4\sqrt{3}$cm2C.8 cm2D.12 cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某電腦公司有6名產(chǎn)品推銷員,其工作年限與年推銷金額的數(shù)據(jù)如表:
推銷員編號12345
工作年限x/年35679
推銷金額y/萬元23345
(1)以工作年限為自變量,推銷金額為因變量y,作出散點(diǎn)圖;
(2)求年推銷金額y關(guān)于工作年限x的線性回歸方程;
(3)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{5}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{5}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=2+acos x(a≠0).
(1)判斷函數(shù)的奇偶性;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求函數(shù)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若x,y滿足不等式組$\left\{\begin{array}{l}x+y≥2\\ y≤x\\ x≤2\end{array}\right.$則z=2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知半徑為r的圓內(nèi)切于某等邊三角形,若在該三角形內(nèi)任取一點(diǎn),則該點(diǎn)到圓心的距離大于半徑r的概率為(  )
A.$\frac{\sqrt{3}π}{9}$B.1-$\frac{\sqrt{3}π}{9}$C.$\frac{\sqrt{3}π}{18}$D.1-$\frac{\sqrt{3}π}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知矩形ABCD中,E、F分別是AB、CD上的點(diǎn),BE=CF=1,BC=2,AB=CD=3,P、Q分別為DE、CF的中點(diǎn),現(xiàn)沿著EF翻折,使得二面角A-EF-B大小為$\frac{2π}{3}$.
(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求二面角A-DB-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=xln(x-1)-a(x-2).
(Ⅰ)若a=2017,求曲線f(x)在x=2處的切線方程;
(Ⅱ)若當(dāng)x≥2時(shí),f(x)≥0,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案