已知點F( 1,0),⊙F與直線4x+3y+1=0相切,動圓M與⊙F及y軸都相切.
(I )求點M的軌跡C的方程;
(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向⊙F各引一條切線,切點 分別為P,Q,記α=∠PAF,β=∠QBF.求證sinα+sinβ是定值.
解:(Ⅰ)⊙F的半徑r
=1,∴⊙F的方程為(x-1)
2+y
2=1,
由題意動圓M與⊙F及y軸都相切,分以下情況:
(1)動圓M與⊙F及y軸都相切,但切點不是原點的情況:
作MH⊥y軸于H,則|MF|-1=|MH|,即|MF|=|MH|+1,
過M作直線x=-1的垂線MN,N為垂足,
則|MF|=|MN|,
∴點M的軌跡是以F為焦點,x=-1為準(zhǔn)線的拋物線,
∴點M的軌跡C的方程為y
2=4x(x≠0);
(2)動圓M與⊙F及y軸都相切且僅切于原點的情況:
此時點M的軌跡C的方程為y=0(x≠0,1);
(Ⅱ)對于(Ⅰ)中(1)的情況:
當(dāng)l不與x軸垂直時,設(shè)直線l的方程為y=k(x-1),
由
得k
2x
2-(2k
2+4)x+k
2=0,
設(shè)A(x
1,y
1),B(x
2,y
2),
則
,x
1x
2=1,
∴sinα+sinβ=
=
=
=1.
當(dāng)l與x軸垂直時,也可得sinα+sinβ=1,
對于(Ⅰ)中(2)的情況不符合題意(即作直線l,交C于一個點或無數(shù)個點,而非兩個交點).
綜上,有sinα+sinβ=1.
分析:(Ⅰ)利用點到直線的距離公式及切線的性質(zhì)、圓的標(biāo)準(zhǔn)方程即可得到⊙F的方程;動圓M與⊙F及y軸都相切分切點不是原點、切點是原點兩種情況分別求出即可:
(Ⅱ)對直線l的斜率分存在和不存在兩種情況:把直線的方程與拋物線的方程聯(lián)立,利用根與系數(shù)的關(guān)系及拋物線的定義即可得出.
點評:熟練掌握點到直線的距離公式、圓的標(biāo)準(zhǔn)方程及切線的性質(zhì)、分類討論的思想方法、直線的方程與拋物線的方程聯(lián)立并利用根與系數(shù)的關(guān)系及拋物線的定義是解題的關(guān)鍵.