【題目】滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為( )
A. 或 B. 2或 C. 2 D. 或
【答案】D
【解析】分析:由約束條件作出可行域,將,化為,z相當(dāng)于的縱截距,由幾何意義可得。
詳解:由題中約束條件作可行域如下圖所示:
將化為,即直線的縱截距取得最大值時(shí)的最優(yōu)解不唯一。
當(dāng)時(shí),直線經(jīng)過點(diǎn)A(-2,-2)時(shí)縱截距最大,此時(shí)最優(yōu)解僅有一個(gè),故不符合題意;
當(dāng)a=2時(shí),直線與重合時(shí)縱截距最大,此時(shí)最優(yōu)解不唯一,故符合題意;
當(dāng)時(shí),直線經(jīng)過點(diǎn)B(0,2)時(shí)縱截距最大,此時(shí)最優(yōu)解僅有一個(gè),故不符合題意;
當(dāng)a=-1時(shí),直線與y=-x+2重合時(shí)縱截距最大,此時(shí)最優(yōu)解不唯一,故符合題意;
當(dāng)a<-1時(shí),直線經(jīng)過點(diǎn)C(2,0)時(shí)縱截距最大,此時(shí)最優(yōu)解僅有一個(gè),故不符合題意。
綜上,當(dāng)a=2或a=-1時(shí)最優(yōu)解不唯一,符合題意。
故本題正確答案為D。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年3月山東省高考改革實(shí)施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學(xué)、外語三門統(tǒng)一高考成績和學(xué)生自主選擇的普通高中學(xué)業(yè)水平等級性考試科目的成績共同構(gòu)成.省教育廳為了解正就讀高中的學(xué)生家長對高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(Ⅰ)請根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:
贊成 | 不贊成 | 合計(jì) | |
城鎮(zhèn)居民 | |||
農(nóng)村居民 | |||
合計(jì) |
(Ⅱ)試判斷我們是否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.
【附】,其中.
0.150 | 0.100 | 0.050 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是( )
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是( )
A.90cm2
B.129cm2
C.132cm2
D.138cm2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記max{x,y}= ,min{x,y}= ,設(shè) , 為平面向量,則( )
A.min{| + |,| ﹣ |}≤min{| |,| |}
B.min{| + |,| ﹣ |}≥min{| |,| |}
C.max{| + |2 , | ﹣ |2}≤| |2+| |2
D.max{| + |2 , | ﹣ |2}≥|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)每一架飛機(jī)的引擎在飛行中出現(xiàn)故障率為,且各引擎是否有故障是獨(dú)立的,已知4引擎飛機(jī)中至少有3個(gè)引擎正常運(yùn)行,飛機(jī)就可成功飛行;2引擎飛機(jī)要2個(gè)引擎全部正常運(yùn)行,飛機(jī)也可成功飛行,要使4引擎飛機(jī)比2引擎飛機(jī)更安全,則的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .
(1)證明:DE⊥平面ACD;
(2)求二面角B﹣AD﹣E的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x2+3x|,x∈R,若方程f(x)﹣a|x﹣1|=0恰有4個(gè)互異的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,函數(shù).
若的最大值為0,記,求的值;
當(dāng)時(shí),記不等式的解集為M,求函數(shù),的值域是自然對數(shù)的底數(shù);
當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com