【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ. (Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
【答案】解:(Ⅰ)曲線C1的參數(shù)方程為 (t為參數(shù)), 則曲線C1的普通方程為(x﹣5)2+(y﹣4)2=25,
曲線C1的極坐標(biāo)方程為ρ2﹣10ρcosθ﹣8ρsinθ+16=0.
(Ⅱ)曲線C1的極坐標(biāo)方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲線C2的極坐標(biāo)方程為ρ=2cosθ,聯(lián)立得 ,又θ∈[0,2π),則θ=0或 ,
當(dāng)θ=0時(shí),ρ=2;當(dāng) 時(shí), ,所以交點(diǎn)坐標(biāo)為(2,0),
【解析】(Ⅰ)把C1的參數(shù)方程化為普通方程,再化為極坐標(biāo)方程;(Ⅱ)曲線C1的極坐標(biāo)方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲線C2的極坐標(biāo)方程為ρ=2cosθ,聯(lián)立,即可求C1與C2交點(diǎn)的極坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C以原點(diǎn)為中心,左焦點(diǎn)F的坐標(biāo)是(﹣1,0),長軸長是短軸長的 倍,直線l與橢圓C交于點(diǎn)A與B,且A、B都在x軸上方,滿足∠OFA+∠OFB=180°;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)對(duì)于動(dòng)直線l,是否存在一個(gè)定點(diǎn),無論∠OFA如何變化,直線l總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△AnBnCn的三邊長分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , , ,則( )
A.{Sn}為遞減數(shù)列
B.{Sn}為遞增數(shù)列
C.{S2n﹣1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D.{S2n﹣1}為遞減數(shù)列,{S2n}為遞增數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},a1=a(a∈R),an+1= (n∈N*).
(1)若數(shù)列{an}從第二項(xiàng)起每一項(xiàng)都大于1,求實(shí)數(shù)a的取值范圍;
(2)若a=﹣3,記Sn是數(shù)列{an}的前n項(xiàng)和,證明:Sn<n+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1+2a2+…+nan=4﹣ .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(3n﹣2)an , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D在AB上,AD:DB=1:2,E為AC中點(diǎn),CD、BE相交于點(diǎn)P,連結(jié)AP.設(shè) =x +y (x,y∈R),則x,y的值分別為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣axlnx(a∈R)在x=1處的切線方程為y=bx+1+ (b∈R).
(1)求a,b的值;
(2)證明:f(x)< .
(3)若正實(shí)數(shù)m,n滿足mn=1,證明: + <2(m+n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎(jiǎng)懲,從就餐的學(xué)生中隨機(jī)抽出100位學(xué)生對(duì)餐廳服務(wù)質(zhì)量打分(5分制),得到如圖柱狀圖.
(Ⅰ)從樣本中任意選取2名學(xué)生,求恰好有1名學(xué)生的打分不低于4分的概率;
(Ⅱ)若以這100人打分的頻率作為概率,在該校隨機(jī)選取2名學(xué)生進(jìn)行打分(學(xué)生打分之間相互獨(dú)立)記X表示兩人打分之和,求X的分布列和E(X).
(Ⅲ)根據(jù)(Ⅱ)的計(jì)算結(jié)果,后勤處對(duì)餐廳服務(wù)質(zhì)量情況定為三個(gè)等級(jí),并制定了對(duì)餐廳相應(yīng)的獎(jiǎng)懲方案,如表所示,設(shè)當(dāng)月獎(jiǎng)金為Y(單位:元),求E(Y).
服務(wù)質(zhì)量評(píng)分X | X≤5 | 6≤X≤8 | X≥9 |
等級(jí) | 不好 | 較好 | 優(yōu)良 |
獎(jiǎng)懲標(biāo)準(zhǔn)(元) | ﹣1000 | 2000 | 3000 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com