【題目】已知函數(shù)
(1)函數(shù) 上有兩個不同的零點,求 的取值范圍;
(2)當(dāng) 時, 的最大值為 ,求 的最小值;
(3)函數(shù) ,對于任意 存在 ,使得 ,試求 的取值范圍.

【答案】
(1)解:

上有兩個不同實根

于是,

解得


(2)解:


(3)解:由題意可知:

由題意 有解

當(dāng) 時,不等式不成立

當(dāng) 時,

,

綜上,m的取值范圍為


【解析】(1)通過換元法以及二次函數(shù)的性質(zhì)求出m的范圍即可。(2)求出f(cosx)的解析式根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最大值,得到關(guān)于m的方程即可求出m的值從而求出函數(shù)的解析式故可得到函數(shù)的最小值。(3)把問題轉(zhuǎn)化為 g(x) min f(t) 有解求出 g(x) 的最小值,再分離參數(shù)m利用函數(shù)的單調(diào)性求出m的范圍即可。
【考點精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的性質(zhì)和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的程序框圖表示的算法中,輸入三個實數(shù)a,b,c,要求輸出的x是這三個數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點,等比數(shù)列{an}的前n項和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項為2c,前n項和滿足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{ }的前n項和為Tn , 問使Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】葫蘆島市某工廠黨委為了研究手機對年輕職工工作和生活的影響情況做了一項調(diào)查:在廠內(nèi)用簡單隨機抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計看手機時間”(單位:小時)進行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計看手機時間”的平均值和所抽取的女生 “每十天累計看手機時間”的中位數(shù)分別是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知向量 , ,且
(1)求角B的大;
(2)若b=2,△ABC的面積為 ,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)面A1ADD1⊥底面ABCD,D1A=D1D= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.

(1)求證:A1O∥平面AB1C;
(2)求銳二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐 中,底面ABCD是直角梯形, ,平面 底面ABCD, O為AD的中點, M是棱PC上的點, AD=2AB.

(1)求證:平面 平面PAD;
(2)若 平面BMO,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,傾斜角為 的直線l與曲線C: ,(α為參數(shù))交于A,B兩點,且|AB|=2,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,則直線l的極坐標(biāo)方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(x,y)在圓x2+y2﹣6x﹣6y+14=0上
(1)求 的最大值和最小值;
(2)求x2+y2+2x+3的最大值與最小值;
(3)求x+y的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案