如圖所示的是正方形的頂點A為圓心,邊長為半徑的畫弧形成的圖象,現(xiàn)向正方形內(nèi)投擲一顆豆子(假設(shè)豆子不落在線上),則恰好落在陰影部分的概率為
 
考點:幾何概型
專題:應(yīng)用題,概率與統(tǒng)計
分析:先令正方形的邊長為a,則S正方形=a2,則扇形所在圓的半徑也為a,則S扇形=
1
4
π
a2,從而結(jié)合幾何概型的計算公式即可求得恰好落在陰影部分的概率.
解答: 解:令正方形的邊長為a,則S正方形=a2,
則扇形所在圓的半徑也為a,則S扇形=
1
4
π
a2
則豆子恰好落在陰影部分的概率為P=1-
1
4
π

故答案為:1-
1
4
π
點評:本小題主要考查扇形面積公式、幾何概型等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想.關(guān)鍵是要求出陰影部分的面積及正方形的面積.屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若(3
x
-
2
5x
n(n∈N*)的展開式中含有常數(shù)項,則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M={x|
1
x
<1},則∁RM等于(  )
A、{x|x≤1}
B、{x|0<x≤1}
C、{x|0≤x≤1}
D、{x|x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-1|+|2x+2|.
(1)解不等式f(x)>5;
(2)若關(guān)于x的方程
1
f(x)-4
=a的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
3
2
,an≠0,且an=
3an-1
3+2an-1
(n≥2),則a2009=(  )
A、
1
4018
B、
1
2009
C、
3
4018
D、
2
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
-
b
|=
6
,|
a
+
b
|=
10
,則
a
b
=( 。
A、1B、2C、3D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中正確命題的個數(shù)是( 。
①“數(shù)列{an}既是等差數(shù)列,又是等比數(shù)列”的充要條件是“數(shù)列{an}是常數(shù)列”;
②不等式|x-1|+|y-1|≤1表示的平面區(qū)域是一個菱形及其內(nèi)部;
③f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),x>0時的解析式是f(x)=2x,則x<0時的解析式為f(x)=-2-x
④若兩個非零向量
a
、
b
共線,則存在兩個非零實數(shù)λ、μ,使λ
a
b
=
0
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某研究機構(gòu)對兒童記憶能力x和識圖能力y進行統(tǒng)計分析,得到如下數(shù)據(jù):
記憶能力x46810
識圖能力y3568
由表中數(shù)據(jù),求得線性回歸方程為
y
=
4
5
x+
a
,若某兒童的記憶能力為12時,則他的識圖能力為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖的程序圖,若輸入x=2,則輸出的所有x的值的和為
 

查看答案和解析>>

同步練習冊答案