【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,且,證明:.
【答案】(1)見解析.(2)見解析.
【解析】分析:(1)先求導(dǎo)數(shù),再根據(jù)二次方程 =0根得情況分類討論:當(dāng)時(shí),.∴在上單調(diào)遞減. 當(dāng)時(shí),根據(jù)兩根大小再分類討論對應(yīng)單調(diào)區(qū)間, (2)先化簡不等式消m得,再利用導(dǎo)數(shù)研究,單調(diào)性,得其最小值大于-1,即證得結(jié)果.
詳解:(1)由,得
,.
設(shè),.
當(dāng)時(shí),即時(shí),,.
∴在上單調(diào)遞減.
當(dāng)時(shí),即時(shí),
令,得,,.
當(dāng)時(shí),,
在上,,在上,,
∴在上單調(diào)遞增,在上單調(diào)遞減.
綜上,當(dāng)時(shí),在上單調(diào)遞減,
當(dāng)時(shí),在,上單調(diào)遞減,在上單調(diào)遞增,
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.
(2)∵有兩個(gè)極值點(diǎn),,且,
∴由(1)知有兩個(gè)不同的零點(diǎn),,
,,且,此時(shí),,
要證明,只要證明.
∵,∴只要證明成立.
∵,∴.
設(shè),,
則,
當(dāng)時(shí),,
∴在上單調(diào)遞增,
∴,即,
∴有兩個(gè)極值點(diǎn),,且時(shí),.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會人數(shù) (萬人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)已知購買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,
投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費(fèi)用).
參考公式: , .
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖所示的程序框圖,若輸入的k=10,則該算法的功能是( )
A.計(jì)算數(shù)列{2n﹣1}的前10項(xiàng)和
B.計(jì)算數(shù)列{2n﹣1}的前9項(xiàng)和
C.計(jì)算數(shù)列{2n﹣1}的前10項(xiàng)和
D.計(jì)算數(shù)列{2n﹣1}的前9項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對任意x,x,xx,有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)學(xué)院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?
參考公式:回歸直線的方程,
其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某種書籍的成本費(fèi)(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中.
為了預(yù)測印刷20千冊時(shí)每冊的成本費(fèi),建立了兩個(gè)回歸模型:.
(1)根據(jù)散點(diǎn)圖,擬認(rèn)為選擇哪個(gè)模型預(yù)測更可靠?(只選出模型即可)
(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程,并預(yù)測印刷20千冊時(shí)每冊的成本費(fèi).
附:對于一組數(shù)據(jù),其回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測試中,卷面滿分為100分,考生得分為整數(shù),規(guī)定60分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對考生復(fù)習(xí)效果的影響,對午休和不午休的考生進(jìn)行了測試成績的統(tǒng)計(jì),數(shù)據(jù)如下表:
分?jǐn)?shù)段 | 0~39 | 40~49 | 50~59 | 60~69 | 70~79 | 80~89 | 90~100 |
午休考生人數(shù) | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人數(shù) | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根據(jù)上述表格完成下列列聯(lián)表:
及格人數(shù) | 不及格人數(shù) | 合計(jì) | |
午休 | |||
不午休 | |||
合計(jì) |
(2)判斷“能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為成績及格與午休有關(guān)”?
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過曲線的左焦點(diǎn)且和雙曲線實(shí)軸垂直的直線與雙曲線交于點(diǎn)A,B,若在雙曲線的虛軸所在的直線上存在—點(diǎn)C,使得,則雙曲線離心率e的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位實(shí)行職工值夜班制度,已知名職工每星期一到星期五都要值一次夜班,且沒有兩人同時(shí)值夜班,星期六和星期日不值夜班,若昨天值夜班,從今天起至少連續(xù)天不值夜班,星期四值夜班,則今天是星期幾( )
A. 五 B. 四 C. 三 D. 二
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com