【題目】 設橢圓的左焦點為,左頂點為,頂點為B.已知(為原點).
(Ⅰ)求橢圓的離心率;
(Ⅱ)設經(jīng)過點且斜率為的直線與橢圓在軸上方的交點為,圓同時與軸和直線相切,圓心在直線上,且,求橢圓的方程.
【答案】(I)首先設橢圓的半焦距為,根據(jù)題意得到,結合橢圓中的關系,得到,化簡得出,從而求得其離心率;
(II)結合(I)的結論,設出橢圓的方程,寫出直線的方程,兩個方程聯(lián)立,求得交點的坐標,利用直線與圓相切的條件,列出等量關系式,求得,從而得到橢圓的方程.
【解析】
(I);
(II).
(I)解:設橢圓的半焦距為,由已知有,
又由,消去得,解得,
所以,橢圓的離心率為.
(II)解:由(I)知,,故橢圓方程為,
由題意,,則直線的方程為,
點的坐標滿足,消去并化簡,得到,
解得,
代入到的方程,解得,
因為點在軸的上方,所以,
由圓心在直線上,可設,因為,
且由(I)知,故,解得,
因為圓與軸相切,所以圓的半徑為2,
又由圓與相切,得,解得,
所以橢圓的方程為:.
科目:高中數(shù)學 來源: 題型:
【題目】給出如下四個命題:
①“”是“”的充分而不必要條件;
②命題“若,則函數(shù)有一個零點”的逆命題為真命題;
③若是的必要條件,則是的充分條件;
④在中,“”是“”的既不充分也不必要條件.
其中正確的命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的定義域為,若存在閉區(qū)間,使得函數(shù)滿足:①在
上是單調函數(shù);②在 上的值域是,則稱區(qū)間是函數(shù) 的“和諧區(qū)間”,
下列結論錯誤的是( )
A.函數(shù) 存在 “和諧區(qū)間”
B.函數(shù) 存在 “和諧區(qū)間”
C.函數(shù) 不存在 “和諧區(qū)間”
D.函數(shù) 存在 “和諧區(qū)間”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的質量按照其質量指標值M進行等級劃分,具體如下表:
質量指標值M | |||
等級 | 三等品 | 二等品 | 一等品 |
現(xiàn)從某企業(yè)生產(chǎn)的這種產(chǎn)品中隨機抽取了100件作為樣本,對其質量指標值M進行統(tǒng)計分析,得到如圖所示的頻率分布直方圖.
(1)記A表示事件“一件這種產(chǎn)品為二等品或一等品”,試估計事件A的概率;
(2)已知該企業(yè)的這種產(chǎn)品每件一等品、二等品、三等品的利潤分別為10元、6元、2元,試估計該企業(yè)銷售10000件該產(chǎn)品的利潤;
(3)根據(jù)該產(chǎn)品質量指標值M的頻率分布直方圖,求質量指標值M的中位數(shù)的估計值(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)甲、乙、丙三所單位進行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )
A.36B.72C.108D.144
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的極值;
(2)是否存在實數(shù),使得與的單調區(qū)間相同,若存在,求出的值,若不存在,請說明理由;
(3)若,求證:在上恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研團隊對某一生物生長規(guī)律進行研究,發(fā)現(xiàn)其生長蔓延的速度越來越快.開始在某水域投放一定面積的該生物,經(jīng)過2個月其覆蓋面積為18平方米,經(jīng)過3個月其覆蓋面積達到27平方米.該生物覆蓋面積(單位:平方米)與經(jīng)過時間個月的關系有兩個函數(shù)模型與可供選擇.
(1)試判斷哪個函數(shù)模型更合適,并求出該模型的函數(shù)解析式;
(2)問約經(jīng)過幾個月,該水域中此生物的面積是當初投放的1000倍(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com