精英家教網 > 高中數學 > 題目詳情
設函數f(x)=x|x-a|+b.
(1)求證:f(x)為奇函數的充要條件是a2+b2=0.
(2)設常數b<-1,且對任意x∈[0,1],f(x)<0恒成立,求實數a的取值范圍.
分析:(1)欲證f(x)為奇函數的充要條件是a2+b2=0,須證兩個方面:①充分性:若a2+b2=0⇒f(x)為奇函數,②必要性:若f(x)為奇函數⇒a2+b2=0;
(2)分類討論:①當x=0時a取任意實數不等式恒成立;②當0<x≤1時f(x)<0恒成立,再轉化為x+
b
x
<a<x-
b
x
恒成立問題,下面利用函數g(x)=x+
b
x
的最值即可求得實數a的取值范圍.
解答:(1)證明:充分性:若a2+b2=0,則a=b=0,
∴f(x)=x|x|對任意的x∈R都有f(-x)+f(x)=0
∴f(x)為奇函數,故充分性成立…(2分)
必要性:若f(x)為奇函數,
則對任意的x∈R都有f(-x)+f(x)=0恒成立,
∴f(0)=0,解得b=0,
∴f(x)=x|x-a|,
由f(1)+f(-1)=0,即|1-a|-|a+1|=0,|1-a|=|1+a|得:a=0.
∴a2+b2=0.
故f(x)為奇函數的充要條件是a2+b2=0…(5分)
(2)解:由b<-1<0,當x=0時a取任意實數不等式恒成立…(6分)
當0<x≤1時f(x)<0恒成立,也即x+
b
x
<a<x-
b
x
恒成立…(8分)
令g(x)=x+
b
x
在0<x≤1上單調遞增,∴a>g(x)max=g(1)=1+b…(10分)
令h(x)=x-
b
x
,則h(x)在(0,
-b
]上單調遞減,[
-b
,+∞)單調遞增,
當b<-1時h(x)=x-
b
x
在0<x≤1上單調遞減,
∴a<h(x)min=h(1)=1-b.
∴1+b<a<1-b…(12分)
點評:本小題主要考查充要條件、函數奇偶性與單調性的應用、不等式的解法等基礎知識,考查運算求解能力,化歸與轉化思想.屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為A,若存在非零實數t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數.如果定義域為[0,+∞)的函數f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數,那么實數m的取值范圍是( 。
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案