17.分別求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.
(Ⅰ)焦點(diǎn)在y軸上,焦距是16,離心率e=$\frac{4}{3}$;
(Ⅱ)一個(gè)焦點(diǎn)為F(-6,0)的等軸雙曲線.

分析 (Ⅰ)由條件可知c=8,又e=$\frac{4}{3}$,所以a=6,求出b,即可求出雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)所求等軸雙曲線:x2-y2=a2,則c2=2a2=36,求出a,即可求出雙曲線的標(biāo)準(zhǔn)方程.

解答 解:(Ⅰ)由條件可知c=8,又e=$\frac{4}{3}$,所以a=6,b=$\sqrt{64-36}$=2$\sqrt{7}$,
故雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{36}-\frac{{x}^{2}}{28}$=1.…(5分)
(Ⅱ)設(shè)所求等軸雙曲線:x2-y2=a2,則c2=2a2=36,
∴a=3$\sqrt{2}$,
故雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{18}-\frac{{y}^{2}}{18}$=1.…(10分)

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=∅,則a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.曲線y=1+$\sqrt{4-{x^2}}$與直線y=k(x-2)+4有兩個(gè)不同交點(diǎn)的充要條件是$\frac{5}{12}<k≤\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給定an=logn+1(n+2),n∈N*,定義使a1•a2•a3•a4…ak為整數(shù)的k(k∈N*)叫做劣數(shù),則區(qū)間(1,62)內(nèi)的所有劣數(shù)的和是(  )
A.50B.51C.52D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓(x-$\sqrt{3}$)2+y2=2相切,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左頂點(diǎn)A(-2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:x=my+t(t≠-a)與橢圓C交于不同兩點(diǎn)B,C,且滿足AB⊥AC.求證:直線l過定點(diǎn),并求出定點(diǎn)M的坐標(biāo);
(Ⅲ)在(Ⅱ)的條件下,過A作AD⊥l,垂足為D,求D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某研究性學(xué)習(xí)小組,為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2月11日至2月16日的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如表數(shù)據(jù):
日期2月11日2月12日2月13日2月14日2月15日2月16日
平均氣溫x(℃)1011131286
飲料銷量y(杯)222529261612
該小組的研究方案:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩天的概率;
(Ⅱ)若選取的是11日和16日的兩組數(shù)據(jù),請(qǐng)根據(jù)12日至15日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選的檢驗(yàn)數(shù)據(jù)的誤差均不超過2杯,則認(rèn)為該方程是理想的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.二項(xiàng)式(ax+$\frac{\sqrt{3}}{6}$)6的展開式的第二項(xiàng)的系數(shù)為-$\sqrt{3}$,則a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠∅,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1)B.(-∞,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案