10.不等式-x2-2x+3>0的解集為(-3,1);(用區(qū)間表示)

分析 把不等式化為(x+3)(x-1)<0,得出不等式對應(yīng)方程的實數(shù)根,寫出解集即可.

解答 解:不等式-x2-2x+3>0可化為x2+2x-3<0,
即(x+3)(x-1)<0,
解得-3<x<1,
所以該不等式的解集為(-3,1).
故答案為:(-3,1).

點評 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.計算:
(1)($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$-160.25=-$\frac{1}{2}$;
(2)log93+lg3•log310=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線的兩條漸近線交于B、C兩點,過B、C分別作AC、AB的垂線,兩垂線交于點D.若D到直線BC的距離小于2(a+$\sqrt{{a}^{2}+^{2}}$),則該雙曲線的離心率的取值范圍是( 。
A.(1,2)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若A${\;}_{n}^{3}$=8C${\;}_{n}^{2}$,則n的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.甲、乙、丙三人準備報考某大學,假設(shè)甲考上的概率為$\frac{2}{5}$,甲,丙兩都考不上的概率為$\frac{6}{25}$,乙,丙兩都考上的概率為$\frac{3}{10}$,且三人能否考上相互獨立.
(Ⅰ)求乙、丙兩人各自考上的概率;
(Ⅱ)設(shè)X表示甲、乙、丙三人中考上的人數(shù)與沒考上的人數(shù)之差的絕對值,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)(1+2i)(a+i)的共軛復數(shù)是它本身,其中a為實數(shù),則a=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.經(jīng)過函數(shù)y=-$\frac{2}{x}$圖象上一點M引切線l與x軸、y軸分別交于點A和點B,O為坐標原點,記△OAB的面積為S,則S=( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.等比數(shù)列{an}的前n項和為Sn,若a1=3,S3=9,求數(shù)列{an}的公比與S10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1,CD的中點.
(Ⅰ)求證:D1F⊥平面ADE;(Ⅱ)求平面A1C1D與平面ADE所成的二面角(銳角)的余弦值.

查看答案和解析>>

同步練習冊答案