已知f(x)=x3+ax2+bx+c在x=1與x=-
2
3
時(shí),都取得極值.
(1)求a,b的值;
(2)若f(-1)=
3
2
,求f(x)的單調(diào)區(qū)間和極值.
分析:(1)因?yàn)楹瘮?shù)在極值點(diǎn)處導(dǎo)數(shù)等于0,所以若f(x)在x=1與x=-
2
3
時(shí),都取得極值,則f′(1)=0,f′(-
2
3
)=0,就可得到a,b的值.
(2)先由f(-1)=
3
2
求出函數(shù)中的c扥值,再求導(dǎo)數(shù),令導(dǎo)數(shù)大于0,解得x的范圍是函數(shù)的增區(qū)間,令導(dǎo)數(shù)小于0,解得x的范圍是函數(shù)的減區(qū)間,增區(qū)間與減區(qū)間的分界點(diǎn)為極值點(diǎn),且當(dāng)極值點(diǎn)左側(cè)導(dǎo)數(shù)大于0,右側(cè)導(dǎo)數(shù)小于0時(shí)取得極大值,當(dāng)極值點(diǎn)左側(cè)導(dǎo)數(shù)小于0,右側(cè)導(dǎo)數(shù)大于0時(shí)取得極小值,再把x的值代入原函數(shù)求出極大值與極小值.
解答:解:(1)f′(x)=3x2+2ax+b,∵f(x)在x=1與x=-
2
3
時(shí),都取得極值,
∴f′(1)=0,f′(-
2
3
)=0,即3×1+2a+b=0,3×(-
2
3
)
2
+2a(-
2
3
)+b=0
解得a=-
1
2
,b=-2

(2)由(1)知,f(x)=x3-
1
2
x2-2x+c
f(-1)=
3
2
,∴-1-
1
2
+2+c=
3
2
,解得c=1
∴f(x)=x3-
1
2
x2-2x+1
又∵f′(x)=3x2-x-2,令f′(x)>0,即3x2-x-2>0,解得,x<-
2
3
,或x>1,
令f′(x)<0,即3x2-x-2<0.解得,-
2
3
<x<1
∴函數(shù)的增區(qū)間為 (-∞,-
2
3
),(1,+∞)
;減區(qū)間為(-
2
3
,1)
,
∴函數(shù)在x=-
2
3
時(shí)又極大值為 
49
27
,在x=1時(shí)有極小值為-
1
2
點(diǎn)評:本題主要考查了函數(shù)的導(dǎo)數(shù)與極值,單調(diào)區(qū)間之間的關(guān)系,屬于導(dǎo)數(shù)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數(shù)f(x)的單調(diào)遞減區(qū)間為(
13
,1),求函數(shù)f(x)的解析式;
(2)若f(x)的導(dǎo)函數(shù)為f′(x),對任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線y=f(x)在x=-1處的切線與直線2x-y-1=0平行,求a的值;
(2)當(dāng)a=-2時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+x-2在點(diǎn)P處的切線與直線y=4x-1平行,則切點(diǎn)P的坐標(biāo)是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+3x2+a(a為常數(shù)) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習(xí)冊答案