7.某校從8名教師中選派4名教師去4個(gè)邊遠(yuǎn)地區(qū)支教,每地1人,其中甲和乙不能同去,甲與丙同去或者同不去,則不同的選派方案的種數(shù)是( 。
A.240B.360C.540D.600

分析 先從8名教師中選出4名,因?yàn)榧缀鸵也煌,甲和丙只能同去或同不去,所以可按選甲和不選甲分成兩類,兩類方法數(shù)相加,再把四名老師分配去4個(gè)邊遠(yuǎn)地區(qū)支教,四名教師進(jìn)行全排列即可,最后,兩步方法數(shù)相乘.

解答 解:分兩步,
第一步,先選四名老師,又分兩類
第一類,甲去,則丙一定去,乙一定不去,有C52=10種不同選法
第二類,甲不去,則丙一定不去,乙可能去也可能不去,有C64=15種不同選法
∴不同的選法有10+15=25種
第二步,四名老師去4個(gè)邊遠(yuǎn)地區(qū)支教,有A44=24
最后,兩步方法數(shù)相乘,得,25×24=600
故選:D.

點(diǎn)評 本題考查了排列組合的綜合應(yīng)用,做題時(shí)候要分清用排列還是用組合去做.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題“?x∈R,sinx>0”的否定是(  )
A.?x∈R,sinx<0B.?x∈R,sinx≤0C.?x∈R,sinx≤0D.?x∈R,sinx<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),則f($\frac{1}{4}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\sqrt{1-x}$+lg(3x+1)的定義域是( 。
A.(-∞,$-\frac{1}{3}$)B.(-$\frac{1}{3}$,$\frac{1}{3}$)C.($-\frac{1}{3}$,1]D.($-\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知變量x,y有如表中的觀察數(shù)據(jù),得到y(tǒng)對x的回歸方程是$\widehaty=0.83x+a$,則其中a的值是(  )
x0134
y2.44.54.66.5
A.2.64B.2.84C.3.95D.4.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線l過點(diǎn)A(-1,0)且與⊙B:x2+y2-2x=0相切于點(diǎn)D,以坐標(biāo)軸為對稱軸的雙曲線E過點(diǎn)D,一條漸進(jìn)線平行于l,則E的方程為( 。
A.$\frac{3{y}^{2}}{4}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{2}$-$\frac{3{y}^{2}}{2}$=1C.$\frac{5{y}^{2}}{3}$-x2=1D.$\frac{3{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=x2在P(1,1)處的切線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行,則雙曲線的離心率是(  )
A.5B.$\sqrt{5}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$)-tanα•cosx,且f($\frac{π}{3}$)=$\frac{1}{2}$.
(1)求tanα的值;
(2)求函數(shù)g(x)=f(x)+cosx的對稱軸與對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列四個(gè)關(guān)于圓錐曲線的命題,正確的是( 。
①從雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離等于它的虛半軸長;
②已知M(-2,0)、N(2,0),|PM|+|PN|=3,則動點(diǎn)P的軌跡是一條線段;
③關(guān)于x的方程x2-mx+1=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線$\frac{{x}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1與橢圓$\frac{{x}^{2}}{16}$+$\frac{{x}^{2}}{9}$=1有共同的焦點(diǎn).
A.①②B.①③C.②③D.②④

查看答案和解析>>

同步練習(xí)冊答案