如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,,D是棱CC1的中點.
(Ⅰ)證明:A1D⊥平面AB1C1;
(Ⅱ)求二面角B-AB1-C1的余弦值.

【答案】分析:先根據(jù)條件得到BC⊥平面ACC1A1.建立空間直角坐標系,求出各對應點的坐標,
(Ⅰ)求出向量A1D,B1C1,AB1的坐標,只要證得其數(shù)量積為0即可得到結(jié)論.
(Ⅱ)先求出兩個平面的法向量,再代入夾角計算公式即可求出結(jié)論.
解答:解:∵∠ACB=90°,∴BC⊥AC.
∵三棱柱ABC-A1B1C1為直三棱柱,∴BC⊥CC1
∵AC∩CC1=C,∴BC⊥平面ACC1A1.                         …(2分)
以C為坐標原點,CB、CC1、CA所在的直線分別為x軸、y軸、z軸建立如圖所示的空間直角坐標系,
則C(0,0,0),B(1,0,0),,,.                                                     …(4分)
(Ⅰ),,
=0,=0,
,即A1D⊥B1C1,A1D⊥AB1
∵B1C1∩AB1=B1,∴A1D⊥平面AB1C1.                             …(7分)
(Ⅱ)設n=(x,y,z)是平面ABB1的法向量,由
取z=1,則是平面ABB1的一個法向量.                   …(10分)
是平面AB1C1的一個法向量,…(12分)
與二面角B-AB1-C1的大小相等.
由cos<,>==-
故二面角B-AB1-C1的余弦值為.                               …(14分)
點評:本小題主要考查空間中線面關(guān)系,二面角及其平面角、坐標方法的運用等基礎(chǔ)知識,考查數(shù)形結(jié)合的數(shù)學思想和方法,以及空間想象能力、邏輯推理能力和運算求解能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點,P是CD上的點.
(1)求直線PE與平面ABC所成角的正切值的最大值;
(2)求證:直線PE∥平面A1BF;
(3)求直線PE與平面A1BF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點,點F在線段AA1上,當AF=
a或2a
a或2a
時,CF⊥平面B1DF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點.
(Ⅰ)求證:B1C1⊥平面ABB1A1
(Ⅱ)設E是CC1的中點,試求出A1E與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求證:B1C1⊥平面ABB1A1
(3)在CC1上是否存在一點E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案