已知圓C的圓心在曲線y=上,圓C過(guò)坐標(biāo)原點(diǎn)O,且與x軸、y軸交于A、B兩點(diǎn),則△OAB的面積是( )
A.2 B.3 C.4 D.8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-7拋物線(解析版) 題型:選擇題
已知直線l1:4x-3y+11=0和直線l2:x=-1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( )
A.2 B.3 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-5橢圓(解析版) 題型:選擇題
橢圓+y2=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,過(guò)F1作垂直于x軸的直線與橢圓相交,一個(gè)交點(diǎn)為P,則|PF2|=( )
A. B. C. D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題
若點(diǎn)P(3,-1)為圓(x-2)2+y2=25的弦AB的中點(diǎn),則直線AB的方程為( )
A.x+y-2=0 B.2x-y-7=0
C.2x+y-5=0 D.x-y-4=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:解答題
已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過(guò)直線l上的動(dòng)點(diǎn)P作圓C的一條切線,設(shè)切點(diǎn)為T(mén),求|PT|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:選擇題
設(shè)圓的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,則原點(diǎn)與圓的位置關(guān)系是( )
A.原點(diǎn)在圓上 B.原點(diǎn)在圓外
C.原點(diǎn)在圓內(nèi) D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點(diǎn)坐標(biāo)與距離公式(解析版) 題型:解答題
已知直線l1:x+a2y+1=0和直線l2:(a2+1)x-by+3=0(a,b∈R).
(1)若l1∥l2,求b的取值范圍;
(2)若l1⊥l2,求|ab|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題
已知直線l經(jīng)過(guò)點(diǎn)(,2),其橫截距與縱截距分別為a、b(a、b均為正數(shù)),則使a+b≥c恒成立的c的取值范圍為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:解答題
在如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com