已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于

當(dāng)時(shí),;當(dāng)時(shí),

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

【答案】

(1).   (2)的最小值為. 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東)已知遞增的等差數(shù)列{an}滿足a1=1,a3=a22-4,則an=
2n-1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等差數(shù)列{an}滿足a1=1,a3=a22-4,則an=
2n-1
2n-1
,Sn=
n2
n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增等差數(shù)列{an}滿足:a1=1,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若不等式(1-
1
2a1
)•(1-
1
2a2
)…(1-
1
2an
)≤
m
2an+1
對(duì)任意n∈N+,試猜想出實(shí)數(shù)m小值,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高二(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知遞增等差數(shù)列{an}滿足:a1=1,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若不等式(1-)•(1-)…(1-)≤對(duì)任意n∈N+,試猜想出實(shí)數(shù)m小值,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案