【題目】某單位選派甲乙丙三人組隊參加知識競賽,甲乙丙三人在同時回答一道問題時,已知甲答對的概率是,甲丙兩人都答錯的概率是,乙丙兩人都答對的概率是,規(guī)定每隊只要有一人答對此題則該隊答對此題.

1)求該單位代表隊答對此題的概率;

2)此次競賽規(guī)定每隊都要回答10道必答題,每道題答對得20分,答錯得分.若該單位代表隊答對每道題的概率相等且回答任一道題的對錯對回答其他題沒有影響,求該單位代表隊必答題得分的均值(精確到1)

【答案】12184

【解析】

1)根據(jù)已知條件列方程組解得甲、乙、丙答對的概率,再根據(jù)對立事件的概率公式可求得結(jié)果;

2)記X為該單位代表隊必答題答對的道數(shù),Y為必答題的得分,則,,根據(jù)二項分布的期望公式以及期望的性質(zhì)可得結(jié)果.

1)記甲丙分別答對此題為事件A,B,C,

由已知,得,

.又

∴該單位代表隊答對此題的概率為:

2)記X為該單位代表隊必答題答對的道數(shù),Y為必答題的得分,則,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)求:

1的單調(diào)區(qū)間

2的單調(diào)區(qū)間在[0,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設(shè)計的,那么在兩個判斷框中,可以先后填入( )

A. 是偶數(shù)?,? B. 是奇數(shù)?,?

C. 是偶數(shù)?, ? D. 是奇數(shù)?,?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求曲線在點處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的最小值;

2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時,設(shè)函數(shù),若存在區(qū)間,使得函數(shù)上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從岳陽到郴州的快速列車包括起始站和終點站共有六站,將這六站分別記為.有一天,張兵和其他18 名旅客乘同一車廂離開岳陽,這些旅客中有些是湖北人,其他的是湖南人,認(rèn)識所有同車廂旅客的張兵觀測到:除了終點站,在每一站,當(dāng)火車到達時,這節(jié)車廂上的湖南人的數(shù)目與下車旅客的數(shù)目相同,且這次行程中沒有新的旅客進入這節(jié)車廂.張兵又進一步觀測到:當(dāng)火車離開站時,車廂內(nèi)有 12名旅客;當(dāng)火車離開站時,還有 7 名旅客在這一車廂內(nèi);當(dāng)他準(zhǔn)備在站下車時,還有5名旅客在這一車廂內(nèi).試問開始時火車的這一節(jié)車廂有多少湖北人,有多少湖南人?且在旅途中這些數(shù)目如何變化?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水資源與永恒發(fā)展2015年聯(lián)合國世界水資源日主題.近年來,某企業(yè)每年需要向自來水廠繳納水費約4萬元,為了緩解供水壓力,決定安裝一個可使用4年的自動污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(單位:萬元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為02.為了保證正常用水,安裝后采用凈水裝置凈水和自來水廠供水互補的用水模式.假設(shè)在此模式下,安裝后該企業(yè)每年向自來水廠繳納的水費 C(單位:萬元)與安裝的這種凈水設(shè)備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設(shè)備的費用與該企業(yè)4年共將消耗的水費之和.

1) 試解釋的實際意義,請建立y關(guān)于x的函數(shù)關(guān)系式并化簡;

2) 當(dāng)x為多少平方米時,y取得最小值?最小值是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技公司新研制生產(chǎn)一種特殊疫苗,為確保疫苗質(zhì)量,定期進行質(zhì)量檢驗.某次檢驗中,從產(chǎn)品中隨機抽取100件作為樣本,測量產(chǎn)品質(zhì)量體系中某項指標(biāo)值,根據(jù)測量結(jié)果得到如下頻率分布直方圖:

(1)求頻率分布直方圖中的值;

(2)技術(shù)分析人員認(rèn)為,本次測量的該產(chǎn)品的質(zhì)量指標(biāo)值X服從正態(tài)分布,若同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,計算,并計算測量數(shù)據(jù)落在(187.8212.2)內(nèi)的概率;

(3)設(shè)生產(chǎn)成本為y元,質(zhì)量指標(biāo)值為,生產(chǎn)成本與質(zhì)量指標(biāo)值之間滿足函數(shù)關(guān)系假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,試計算生產(chǎn)該疫苗的平均成本.

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

⑴若函數(shù)的圖象經(jīng)過點,求實數(shù)的值.

⑵當(dāng)時,函數(shù)的最小值為1,求當(dāng)時,函數(shù)最大值.

查看答案和解析>>

同步練習(xí)冊答案