【題目】已知函數(shù)為奇函數(shù).
(1)求a的值,并證明是R上的增函數(shù);
(2)若關(guān)于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求實(shí)數(shù)k的取值范圍.
【答案】(1),證明見解析(2)
【解析】
(1)由奇函數(shù)在0處有定義時計(jì)算可得.證明在上為增函數(shù)時,設(shè),再計(jì)算,化簡證明即可.
(2)先根據(jù)奇偶性化簡為,因?yàn)楹瘮?shù)單調(diào)遞增,所以若解集非空,則有解.再根據(jù)二次不等式恒成立的問題求解即可.
(1)因?yàn)?/span>定義在R上的奇函數(shù),所以,得.
此時,,
,所以是奇函數(shù),
所以.
任取R,且,則,因?yàn)?/span>
所以,
所以是R上的增函數(shù).
(2)因?yàn)?/span>為奇函數(shù),f(t2-2t)+f(2t2-k)<0的解集非空,
所以的解集非空,
又在R上單調(diào)遞增,
所以的解集非空,
即在R上有解,所以得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx.
(1)若a=﹣1,求函數(shù)f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數(shù)f(x)在[1,e]上的最值;
(3)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)f(x)的圖象在g(x)=x3的圖象下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是
A. 對分類變量X與Y,隨機(jī)變量K2的觀測值k越大,則判斷“X與Y有關(guān)系”的把握程度越小
B. 在回歸直線方程=0.2x+0.8中,當(dāng)解釋變量x每增加1個單位時,預(yù)報(bào)變量平均增加0.2個單位
C. 兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值就越接近于1
D. 回歸直線過樣本點(diǎn)的中心(, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某影院共有1000個座位,票價(jià)不分等次,根據(jù)該影院的經(jīng)營經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時,票可全部售出,當(dāng)每張票價(jià)高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院一個合適的票價(jià),符合的基本條件是:
①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;
②影院放映一場電影的成本費(fèi)為5750元,票房收入必須高于成本支出.
(1)設(shè)定價(jià)為()元,凈收入為元,求關(guān)于的表達(dá)式;
(2)每張票價(jià)定為多少元時,放映一場的凈收入最多?此時放映一場的凈收入為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究某種圖書每冊的成本費(fèi)(元)與印刷數(shù)(千冊)的關(guān)系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中, .
(1)根據(jù)散點(diǎn)圖判斷: 與哪一個更適宜作為每冊成本費(fèi)(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);
(3)若每冊書定價(jià)為10元,則至少應(yīng)該印刷多少冊才能使銷售利潤不低于78840元?(假設(shè)能夠全部售出,結(jié)果精確到1)
(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)分別為, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).
(1)寫出曲線的極坐標(biāo)方程,并求與交點(diǎn)的極坐標(biāo);
(2)射線與曲線與分別交于點(diǎn)(異于原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人耳的聽力情況可以用電子測聽器檢測,正常人聽力的等級為0-25(分貝),并規(guī)定測試值在區(qū)間為非常優(yōu)秀,測試值在區(qū)間為優(yōu)秀.某班50名同學(xué)都進(jìn)行了聽力測試,所得測試值制成頻率分布直方圖:
(Ⅰ)現(xiàn)從聽力等級為的同學(xué)中任意抽取出4人,記聽力非常優(yōu)秀的同學(xué)人數(shù)為,求的分布列與數(shù)學(xué)期望;
(Ⅱ)在(Ⅰ)中抽出的4人中任選一人參加一個更高級別的聽力測試,測試規(guī)則如下:四個音叉的發(fā)生情況不同,由強(qiáng)到弱的次序分別為1,2,3,4.測試前將音叉隨機(jī)排列,被測試的同學(xué)依次聽完后給四個音叉按發(fā)音的強(qiáng)弱標(biāo)出一組序號, , , (其中, , , 為1,2,3,4的一個排列).若為兩次排序偏離程度的一種描述, ,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為左,右焦點(diǎn),分別為左,右頂點(diǎn),D為上頂點(diǎn),原點(diǎn)到直線的距離為.設(shè)點(diǎn)在第一象限,縱坐標(biāo)為t,且軸,連接交橢圓于點(diǎn).
(1)求橢圓的方程;
(2)(文)若三角形的面積等于四邊形的面積,求直線的方程;
(理)求過點(diǎn)的圓方程(結(jié)果用t表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com