已知函數(shù),其中m,a均為實(shí)數(shù).
(1)求的極值;
(2)設(shè),若對任意的,恒成立,求的最小值;
(3)設(shè),若對任意給定的,在區(qū)間上總存在,使得成立,求的取值范圍.
(1)極大值為1,無極小值;(2)3?;(3).
【解析】
試題分析:(1)求的極值,就是先求出,解方程,此方程的解把函數(shù)的定義域分成若干個區(qū)間,我們再確定在每個區(qū)間里的符號,從而得出極大值或極小值;(2)此總是首先是對不等式恒成立的轉(zhuǎn)化,由(1)可確定在上是增函數(shù),同樣的方法(導(dǎo)數(shù)法)可確定函數(shù)在上也是增函數(shù),不妨設(shè),這樣題設(shè)絕對值不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719114774404459/SYS201411171911595413399689_DA/SYS201411171911595413399689_DA.015.png">
,整理為,由此函數(shù)在區(qū)間上為減函數(shù),則在(3,4)上恒成立,要求的取值范圍.采取分離參數(shù)法得恒成立,于是問題轉(zhuǎn)化為求在上的最大值;(3)由于的任意性,我們可先求出在上的值域,題設(shè)“在區(qū)間上總存在,使得
成立”,轉(zhuǎn)化為函數(shù)在區(qū)間上不是單調(diào)函數(shù),極值點(diǎn)為(),其次,極小值,最后還要證明在上,存在,使,由此可求出的范圍.
試題解析:(1),令,得x=1. 1分
列表如下:
x | (?∞,1) | 1 | (1,∞) |
| 0 | ? | |
g(x) | ↗ | 極大值 | ↘ |
∵g(1)=1,∴y=的極大值為1,無極小值. 3分
(2)當(dāng)時,,.
∵在恒成立,∴在上為增函數(shù). 4分
設(shè),∵>0在恒成立,
∴在上為增函數(shù). 5分
設(shè),則等價于,
即.
設(shè),則u(x)在為減函數(shù).
∴在(3,4)上恒成立. 6分
∴恒成立.
設(shè),∵=,x?[3,4],
∴,∴<0,為減函數(shù).
∴在[3,4]上的最大值為v(3)=3?. 8分
∴a≥3?,∴的最小值為3?. 9分
(3)由(1)知在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719114774404459/SYS201411171911595413399689_DA/SYS201411171911595413399689_DA.075.png">. 10分
∵,,
當(dāng)時,在為減函數(shù),不合題意. 11分
當(dāng)時,,由題意知在不單調(diào),
所以,即.① 12分
此時在上遞減,在上遞增,
∴,即,解得.②
由①②,得. 13分
∵,∴成立. 14分
下證存在,使得≥1.
取,先證,即證.③
設(shè),則在時恒成立.
∴在時為增函數(shù).∴,∴③成立.
再證≥1.
∵,∴時,命題成立.
綜上所述,的取值范圍為. 16分
考點(diǎn):導(dǎo)數(shù)的應(yīng)用,求單調(diào)區(qū)間,極值,求函數(shù)的值域,不等式恒成立等函數(shù)的綜合應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上不單調(diào),求的取值范圍;
(3)當(dāng)時,函數(shù)的圖像與x軸交于兩點(diǎn),且,又是的導(dǎo)函數(shù),若正常數(shù)滿足條件.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
公比為2的等比數(shù)列的各項(xiàng)都是正數(shù),且則= ( )
A.4 B.-4 C.2 D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三百校聯(lián)合調(diào)研測試(一)數(shù)學(xué)試卷(解析版) 題型:填空題
已知,則________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
甲乙兩個同學(xué)進(jìn)行定點(diǎn)投籃游戲,已知他們每一次投籃投中的概率均為,且各次投籃的結(jié)果互不影響.甲同學(xué)決定投5次,乙同學(xué)決定投中1次就停止,否則就繼續(xù)投下去,但投籃次數(shù)不超過5次.
(1)求甲同學(xué)至少有4次投中的概率;
(2)求乙同學(xué)投籃次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)求的最小正周期和值域;
(2)在銳角△中,角的對邊分別為,若且,,求和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
從甲,乙,丙,丁4個人中隨機(jī)選取兩人,則甲乙兩人中有且只有一個被選取的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知正數(shù)滿足,則的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學(xué)情況調(diào)查(一)理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)等差數(shù)列的前項(xiàng)和為,若,,,則正整數(shù)= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com