閱讀與理解:asinx+bcosx=
a2+b2
sin(x+φ)
給出公式:
我們可以根據(jù)公式將函數(shù)g(x)=sinx+
3
cosx
化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3
)

(1)根據(jù)你的理解將函數(shù)f(x)=
3
2
sinx+
3
2
cosx
化為f(x)=Asin(ωx+φ)的形式.
(2)求出上面函數(shù)f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間.
分析:(1)按閱讀材料中的模式提取
3
,再用正弦的和角公式化簡即可
(2)由三函數(shù)的相關(guān)公式及正弦函數(shù)的圖象求其單調(diào)區(qū)間,利用T=
ω
周期,根據(jù)正弦函數(shù)圖象求對稱中心的坐標(biāo)即可
解答:解:①由題意f(x)=
3
2
sinx+
3
2
cosx
=
3
(
3
2
sinx+
1
2
cosx)
=
3
sin(x+
π
6
)

②由①中的解析式知:T=2π,
中心(kπ-
π
6
,0),(k∈Z)
,
x+
π
6
∈ [2kπ-
π
2
,2kπ+
π
2
] , k∈z

解得,函數(shù)的遞增區(qū)間[2kπ-
3
,2kπ+
π
3
],(k∈Z)
點評:本題考查三角函數(shù)恒等變換公式以及正弦函數(shù)的圖象與性質(zhì),屬于三角函數(shù)中的基礎(chǔ)題,利用和差角公式化簡三角函數(shù)解析式是三角函數(shù)中的一個重要運用,要熟練掌握這一公式,了解其用途.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀與理解:
給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;我們可以根據(jù)公式將函數(shù)g(x)=sinx+
3
cosx化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3

(1)根據(jù)你的理解將函數(shù)f(x)=sinx+cos(x-
π
6
)化為f(x)=Asin(ωx+φ)的形式.
(2)求出上題函數(shù)f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

閱讀與理解:數(shù)學(xué)公式給出公式:
我們可以根據(jù)公式將函數(shù)數(shù)學(xué)公式化為:數(shù)學(xué)公式
(1)根據(jù)你的理解將函數(shù)數(shù)學(xué)公式化為f(x)=Asin(ωx+φ)的形式.
(2)求出上面函數(shù)f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 三角函數(shù)》2013年單元測試卷(4)(解析版) 題型:解答題

閱讀與理解:
給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;我們可以根據(jù)公式將函數(shù)g(x)=sinx+cosx化為:g(x)=2(sinx+cosx)=2(sinxcos+cosxsin)=2sin(x+
(1)根據(jù)你的理解將函數(shù)f(x)=sinx+cos(x-)化為f(x)=Asin(ωx+φ)的形式.
(2)求出上題函數(shù)f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省眉山市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀與理解:給出公式:
我們可以根據(jù)公式將函數(shù)化為:
(1)根據(jù)你的理解將函數(shù)化為f(x)=Asin(ωx+φ)的形式.
(2)求出上面函數(shù)f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案