【題目】已知等比數(shù)列{an}的公比q≠1,則下面說法中不正確的是(
A.{an+2+an}是等比數(shù)列
B.對于k∈N* , k>1,ak1+ak+1≠2ak
C.對于n∈N* , 都有anan+2>0
D.若a2>a1 , 則對于任意n∈N* , 都有an+1>an

【答案】D
【解析】解:對于A,{an+2+an}是公比為q2的等比數(shù)列,正確;
對于B,對于k∈N* , k>1,ak1+ak+1= +akq,∵q≠1,∴ak1+ak+1≠2ak , 正確‘
對于C,anan+2=an2q2>0,正確;
對于D,若a2>a1 , a>1,則對于任意n∈N* , 都有an+1>an , 故不正確,
故選:D.
【考點精析】利用等比數(shù)列的基本性質對題目進行判斷即可得到答案,需要熟知{an}為等比數(shù)列,則下標成等差數(shù)列的對應項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,點M是AB的中點,則直線DB1與MC所成角的余弦值為(
A.﹣
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分為16為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進行技術攻關,新上了把二氧化碳處理轉化為一種可利用的化工產(chǎn)品的項目,經(jīng)測算,該項目月處理成本y與月處理量x之間的函數(shù)關系可近似地表示為

且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元,若該項目不獲利,國家將給予補償

1當x[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?

2該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)在邊長為1的正方形ABCD內任取一點M,求事件“|AM|≤1”的概率;
(2)某班在一次數(shù)學活動中,老師讓全班56名同學每人隨機寫下一對都小于1的正實數(shù)x、y,統(tǒng)計出兩數(shù)能與1構成銳角三角形的三邊長的數(shù)對(x,y)共有12對,請據(jù)此估計π的近似值(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|.
(1)若f(x)≤m的解集為{x|﹣1≤x≤5},求實數(shù)a,m的值.
(2)當a=2且0≤t<2時,解關于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分為16已知函數(shù)

1,求函數(shù)的極值,并指出極大值還是極小值;

2,求函數(shù)上的最值;

3,求證:在區(qū)間上,函數(shù)的圖象在的圖象下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線 =1與直線y=2x+m有兩個交點,則m的取值范圍是(
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,如圖是根據(jù)調查結果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.則抽取的100名觀眾中“體育迷”有名.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分16分)已知函數(shù),

1)若函數(shù)上單調遞增,求實數(shù)的取值范圍;

2)若直線是函數(shù)圖象的切線,求的最小值;

3)當時,若的圖象有兩個交點,求證: .(取,取,取

查看答案和解析>>

同步練習冊答案