[2014·四川模擬]在四次獨立重復(fù)試驗中,事件A在每次試驗中出現(xiàn)的概率相同,若事件A至少發(fā)生一次的概率為,則事件A恰好發(fā)生一次的概率為(  )
A.B.C.D.
C
設(shè)事件A在每次試驗中發(fā)生的概率為p,則事件A在4次獨立重復(fù)試驗中,恰好發(fā)生k次的概率為
pkpk(1-p)4-k(k=0,1,2,3,4),
∴p0p0(1-p)4=(1-p)4,由條件知1-p0,
∴(1-p)4,∴1-p=,∴p=.
∴p1p·(1-p)3=4××()3,故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋子中裝有7個小球,其中紅球4個,編號分別為1,2,3,4,黃球3個,編號分別為2,4,6,從袋子中任取4個小球(假設(shè)取到任一小球的可能性相等).
(1)求取出的小球中有相同編號的概率;
(2)記取出的小球的最大編號為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

德陽中學(xué)數(shù)學(xué)競賽培訓(xùn)共開設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學(xué)競賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報名參加數(shù)學(xué)競賽培訓(xùn),每一位同學(xué)對這四門課程考試是否合格相互獨立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨立,
課    程
初等代數(shù)
初等幾何
初等數(shù)論
微積分初步
合格的概率




(1)求甲同學(xué)取得參加數(shù)學(xué)競賽復(fù)賽的資格的概率;
(2)記表示三位同學(xué)中取得參加數(shù)學(xué)競賽復(fù)賽的資格的人數(shù),求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(1+2
x
3(1-
3x
5的展開式中x的系數(shù)是( 。
A.-4B.-2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在二項式(
x
+
1
2
4x
n的展開式中,前三項的系數(shù)成等差數(shù)列,求展開式中的有理項和二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=C
04
x4+C
14
x3+C
24
x2+C
34
x+C
44
圖象的對稱軸方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在高三的一個班中,有的學(xué)生數(shù)學(xué)成績優(yōu)秀,若從班中隨機找出5名學(xué)生,那么數(shù)學(xué)成績優(yōu)秀的學(xué)生數(shù)ξ~B(5,),則P(ξ=k)取最大值的k值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球得2分,取出一個藍球得3分.
(1)當a=3,b=2,c=1時,從該袋子中任取(有放回,且每球取到的機會均等)2個球,記隨機變量ξ為取出此兩球所得分數(shù)之和,求ξ分布列;
(2)從該袋子中任取(且每球取到的機會均等)1個球,記隨機變量η為取出此球所得分數(shù).若E(η)=,V(η)=,求a∶b∶c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商場為促銷設(shè)計了一個抽獎模型,一定數(shù)額的消費可以獲得一張抽獎券,每張抽獎券可以從一個裝有大小相同的4個白球和2個紅球的口袋中一次性摸出3個球,至少摸到一個紅球則中獎.
(1)求一次抽獎中獎的概率;
(2)若每次中獎可獲得10元的獎金,一位顧客獲得兩張抽獎券,求兩次抽獎所得的獎金額之和X(元)的概率分布.

查看答案和解析>>

同步練習(xí)冊答案