(本小題12分)
已知函數(shù)
(Ⅰ)用分段函數(shù)的形式表示該函數(shù);
(Ⅱ)畫出該函數(shù)的圖象;
(Ⅲ)根據(jù)圖象,寫出函數(shù)的值域.
(Ⅰ);(Ⅱ)見解析;(Ⅲ)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111919000986322596/SYS201211191900476757738066_DA.files/image004.png">.
【解析】本題考查了由函數(shù)解析式畫出函數(shù)圖象,根據(jù)圖象求出函數(shù)的值域和單調(diào)區(qū)間,考查了作圖和讀圖能力.
(1)根據(jù)x的符號分-2<x≤0和0<x≤2兩種情況,去掉絕對值求出函數(shù)的解析式;
(2)根據(jù)(1)的函數(shù)解析式,畫出函數(shù)的圖象;
(3)根據(jù)函數(shù)的圖象求出函數(shù)的值域和函數(shù)單調(diào)區(qū)間.
解:(Ⅰ) …………4分
(Ⅱ)
…………8分
(Ⅲ)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111919000986322596/SYS201211191900476757738066_DA.files/image009.png">. …………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建師大附中高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題12分)已知函數(shù)(為常數(shù))是實(shí)數(shù)集上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).
(I)求的值;
(II)若在及所在的取值范圍上恒成立,求的取值范圍;
(Ⅲ)討論關(guān)于的方程的根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年吉林省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本小題12分)已知二次函數(shù)滿足且.
(1)求的解析式;
(2) 當(dāng)時,不等式:恒成立,求實(shí)數(shù)的范圍.
(3)設(shè),求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題12分)
已知雙曲線的中心在原點(diǎn),左右焦點(diǎn)分別為,離心率為,且過點(diǎn),
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線系(其中為參數(shù))所過的定點(diǎn)恰在雙曲線上,求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建省四地六校高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題
(本小題12分)
已知橢圓C的左右焦點(diǎn)坐標(biāo)分別是(-1,0),(1, 0),離心率,直線與橢圓C交于不同的兩點(diǎn)M,N,以線段MN為直徑作圓P。
(1)求橢圓C的方程;
(2)若圓P恰過坐標(biāo)原點(diǎn),求圓P的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年河南省許昌市高二下學(xué)期聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題12分)
已知曲線直線,且直線與曲線相切于點(diǎn),求直線的方程和切點(diǎn)的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com