【題目】已知函數(shù)的圖象的一個(gè)對(duì)稱中心與它相鄰的一條對(duì)稱軸之間的距離為

(1)求函數(shù)f(x)的對(duì)稱軸方程及單調(diào)遞增區(qū)間;

(2)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈()時(shí),求函數(shù)g(x)的值域.

【答案】(1) 對(duì)稱軸方程為得x=+,k∈Z,單調(diào)區(qū)間見解析;(2) 值域?yàn)椋ī?/span>,].

【解析】

(1)根據(jù)題意得到=,從而得到ω=1,f(x)=sin(2x+)+,2x+=kπ+,求得x=+,即對(duì)稱軸;(2)根據(jù)圖像的變換得到g(x)=sin(4x﹣)+當(dāng)x,)時(shí),4x﹣(﹣,),結(jié)合函數(shù)的性質(zhì)得到值域.

(1)∵函數(shù)

sin2ωx+=sin(2ωx+)+ 的圖象的一個(gè)對(duì)稱中心與它相鄰的一條對(duì)稱軸之間的距離為=,

∴ω=1,f(x)=sin(2x+)+

令2x+=kπ+,求得x=+,

故函數(shù)f(x)的對(duì)稱軸方程為得x=+,k∈Z.

(2)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,

可得y=sin(2x﹣+)+=sin(2x﹣)+的圖象;

再將得到的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),

得到函數(shù)y=g(x)=sin(4x﹣)+的圖象.

當(dāng)x∈(,)時(shí),4x﹣∈(﹣,),

∴sin(4x﹣)∈(﹣1,1],

故函數(shù)g(x)的值域?yàn)椋ī?/span>].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)拋物線的光學(xué)原理:平行于拋物線的軸的光線,經(jīng)拋物線反射后,反射光線必經(jīng)過(guò)焦點(diǎn).然后求解此題:有一條光線沿直線射到拋物線)上的一點(diǎn),經(jīng)拋物線反射后,反射光線所在直線的斜率為

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)定點(diǎn)的直線l與拋物線交于兩點(diǎn),與直線交于Q點(diǎn),若,=,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=logax+1),gx)=2loga2x+t)(tR),其中x[0,15]a0,且a1

1)若1是關(guān)于x的方程fx)﹣gx)=0的一個(gè)解,求t的值;

2)當(dāng)0a1時(shí),不等式fx)≥gx)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在正方體的面對(duì)角線上運(yùn)動(dòng),則下列四個(gè)命題:

;

③平面平面;

④三棱錐的體積不變.

其中正確的命題序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求曲線處的切線方程;

)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面幾種推理是合情推理的是(  )

①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是 歸納出所有三角形的內(nèi)角和都是;③由,滿足,,推出是奇函數(shù);④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.

A. ①②B. ①③④C. ①②④D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知坐標(biāo)平面內(nèi)三點(diǎn)P(3,-1),M(6,2),N,直線過(guò)點(diǎn)P.若直線與線段MN相交,則直線的傾斜角的取值范圍( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線.

(1)若直線不經(jīng)過(guò)第四象限,求的取值范圍;

(2)若直線軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時(shí)直線的方程;

(3)已知點(diǎn),若點(diǎn)到直線的距離為,求的最大值并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳組的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

1)補(bǔ)全頻率分布直方圖,并求,,的值;

2)求年齡段人數(shù)的中位數(shù)和眾數(shù);

3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取3人作為領(lǐng)隊(duì),求選取的3名領(lǐng)隊(duì)中年齡都在歲的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案