大前提:對(duì)任意正整數(shù)a,b,a+b≥2
ab
;小前提:x+
1
x
≥2
x
1
x
,結(jié)論;所以x+
1
x
≥2,以上推理過程中的錯(cuò)誤為( 。
A、大前提B、小前提
C、結(jié)論D、無錯(cuò)誤
考點(diǎn):演繹推理的基本方法
專題:規(guī)律型
分析:演繹推理是由一般到特殊的推理,是一種必然性的推理,演繹推理得到的結(jié)論不一定是正確的,這要取決與前提是否真實(shí)和推理的形式是否正確,演繹推理一般模式是“三段論”形式,即大前提小前提和結(jié)論.
解答: 解:∵a,b∈R+,a+b≥2
ab

這是基本不等式的形式,注意到基本不等式的使用條件,a,b都是正數(shù),
x+
1
x
≥2
x•
1
x
是小前提,沒有寫出x的取值范圍,
∴本題中的小前提有錯(cuò)誤,
故選:B.
點(diǎn)評(píng):本題的考點(diǎn)是演繹推理,主要考查三段論.三段論包含:大前提、小前提,結(jié)論,當(dāng)且僅當(dāng)大前提、小前提正確時(shí),結(jié)論正確
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是集合{2t+2s|0≤s<t且s,t∈N}中所有的數(shù)從小到大排成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…,將數(shù)列{an}各項(xiàng)按從小到大寫成如下三角形數(shù)表,用bij表示數(shù)表中第i行第j個(gè)數(shù)(1≤j≤i)則
(Ⅰ)a27=
 

(Ⅱ)
n
i=1
i
i=1
bij
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程x2+(1+i)x-6+3i=0有兩根x1和x2,其中x1是實(shí)數(shù)根,則
x1
x2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(3,m),
b
=(2,-1),
a
b
,則實(shí)數(shù)m的值為( 。
A、-
3
2
B、
3
2
C、2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=
2
,且(
a
-
b
)和
a
垂直,則
a
b
的夾角為(  )
A、60°B、30°
C、45°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱(側(cè)棱與底面垂直,底面是正三角形)的高與底面邊長均為2,其直觀圖和正視圖如下,則它的側(cè)視圖的面積是( 。
A、2
3
B、4
C、
3
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=a(a-1)+ai,若z是純虛數(shù),則實(shí)數(shù)a等于( 。
A、2B、1C、0或1D、-1高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1+x+cosx在(0,2π)上是( 。
A、增函數(shù)
B、減函數(shù)
C、在(0,π)上增,在(π,2π)上減
D、在(0,π)上減,在(π,2π)上增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸的正半軸.若P(2,y)是角θ終邊上一點(diǎn),且sinθ=-
1
2
,則y=( 。
A、-
2
3
3
B、
2
3
3
C、±
2
3
3
D、±
3
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案