14.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a4+a9=10,則S12等于( 。
A.30B.45C.60D.120

分析 利用等差數(shù)列的性質(zhì)與求和公式即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:${S_{12}}=\frac{{({{a_1}+{a_{12}}})×12}}{2}=6×({{a_4}+{a_9}})=60$.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)y=tanωx在區(qū)間(0,$\frac{π}{4}$),($\frac{π}{4},\frac{π}{2}$)上單調(diào)遞增,但在區(qū)間(0,$\frac{π}{2}$)上沒(méi)有單調(diào)性,則ω可以是( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn滿(mǎn)足Sn=2(bn-1),且a2=b1-1,a5=b3-1.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和;
(3)證明:當(dāng)n≥2時(shí),$\sqrt{\frac{1}{{{a_1}+2}}}+\sqrt{\frac{1}{{{a_2}+2}}}+\sqrt{\frac{1}{{{a_3}+2}}}+…+\sqrt{\frac{1}{{{a_n}+2}}}>\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知公比小于1的等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2},7{a_2}=2{S_3}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2(1-Sn+1),若$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_3}{b_5}}}+…+\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}=\frac{5}{21}$,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合A={x|0≤x≤6},集合B={x|x2+2x-8≤0},則A∩B=( 。
A.[0,4]B.[-2,6]C.[0,2]D.[-4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.sin(π-α)=$\frac{1}{7}$,α是第二象限角,則tanα=$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c(a≥b),sin($\frac{π}{3}-A$)=sinB,asinC=$\sqrt{3}$sinA,則a+b的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=x3+bx+c是[-1,1]上的增函數(shù),且f(-1)•f(1)<0,則方程f(x)=0在[-1,1]內(nèi)( 。
A.有3個(gè)實(shí)數(shù)根B.有2個(gè)實(shí)數(shù)根C.有唯一的實(shí)數(shù)根D.沒(méi)有實(shí)數(shù)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)=exsinπx,則方程xf(x)=f'(x)在區(qū)間(-2014,2016)上的所有實(shí)根之和為( 。
A.2015B.4030C.2016D.4032

查看答案和解析>>

同步練習(xí)冊(cè)答案