已知橢圓C的方程為左、右焦點分別為F1、F2,焦距為4,點M是橢圓C上一點,滿足

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點P(0,2)分別作直線PA,PB交橢圓C于A,B兩點,設直線PA,PB的斜率分別為k1,k2,,求證:直線AB過定點,并求出直線AB的斜率k的取值范圍。

 

【答案】

(Ⅰ)(Ⅱ).

【解析】

試題分析:(Ⅰ)在 中,設,,由余弦定理得,

,即,得.

又因為,,

又因為所以,

所以所求橢圓的方程為.                    

(Ⅱ)顯然直線的斜率存在,設直線方程為,

,即

,

得,,又,

,

,

那么

則直線過定點.                

因為,,

,

,所以.  

考點:直線與圓錐曲線的綜合問題;橢圓的標準方程.

點評:本題主要考查了直線與圓錐曲線的綜合問題.此類題綜合性強,要求學生要有較高地轉(zhuǎn)化數(shù)學思想的運用能力,能將已知條件轉(zhuǎn)化到基本知識的運用

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,點A、B分別為其左、右頂點,點F1、F2分別為其左、右焦點,以點A為圓心,AF1為半徑作圓A;以點B為圓心,OB為半徑作圓B;若直線l: y=-
3
3
x
被圓A和圓B截得的弦長之比為
15
6
;
(1)求橢圓C的離心率;
(2)己知a=7,問是否存在點P,使得過P點有無數(shù)條直線被圓A和圓B截得的弦長之比為
3
4
;若存在,請求出所有的P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,橢圓C的左、右焦點分別為F1(-1,0)、F2(1,0),斜率為k(k≠0)的直線l經(jīng)過點F2,交橢圓于A、B兩點,且△ABF1的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點E為x軸上一點,
AF2
F2B
(λ∈R),若
F1F2
⊥(
EA
BE
)
,求點E的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽二模)已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1(-2,0)為左焦點,點M(
2
,
3
)在橢圓上.
(1)求橢圓C的方程;
(2)過點F1作兩條斜率存在且互相垂直的直線l1,l2,設L3與橢圓C相交于點A,B.l2 與橢圓C相交于點D.E,求
AD
EB
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點F1(-1,0)斜率為1的直線交橢圓于P、Q兩點.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點M,使以橢圓的焦點為焦點且過M點的雙曲線E的實軸最長,求點M的坐標和此雙曲線E的方程.

查看答案和解析>>

同步練習冊答案