如圖,在△ABC中,DE∥BC,EF∥CD,且AB=2,AD=
2
,則AF=
 

考點(diǎn):相似三角形的性質(zhì)
專題:立體幾何
分析:由已知得△ADE∽△ABC,△AFE∽△ADC,從而
AD
AB
=
AE
AC
=
AF
AD
,由此能求出AF=
AD2
AB
=
(
2
)2
2
=1.
解答: 解:∵在△ABC中,DE∥BC,EF∥CD,
且AB=2,AD=
2
,
∴△ADE∽△ABC,△AFE∽△ADC,
AD
AB
=
AE
AC
=
AF
AD

∴AF=
AD2
AB
=
(
2
)2
2
=1.
故答案為:1.
點(diǎn)評(píng):本題考查三角形中線段長的求法,是基礎(chǔ)題,解題時(shí)要注意相似三角形的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
2a+acosx+3sinx
2+cosx
(a、b∈R)有最大值和最小值,且最大值與最小值的和為6,則a=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+φ)圖象的一部分如圖所示,則此函數(shù)的解析式可以寫成( 。
A、y=sin(2x+
π
4
B、y=sin(x+
π
8
C、y=sin(2x+
π
8
D、y=sin(2x-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖如圖所示,則輸出S的值為(  )
A、15B、21C、22D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí)f(x)=
log2x,0<x≤16
f(x-8),x>16
,則f(f(-24))=( 。
A、-4B、-2C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,短軸端點(diǎn)到焦點(diǎn)的距離為2.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)A,B是橢圓C上的任意兩點(diǎn),O是坐標(biāo)原點(diǎn),且OA⊥OB,
①求證:原點(diǎn)O到直線AB的距離為定值,并求出該定值;
②任取以橢圓C的長軸為直徑的圓上一點(diǎn)P,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知周長為40的△ABC的頂點(diǎn)B、C在橢圓
x2
a2
+
y2
b2
=1上,頂點(diǎn)A(6,0)是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在邊BC上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a5+a6=7,則S10=( 。
A、35B、70C、42D、49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的定義域?yàn)閇-3,5],則函數(shù)g(x)=f(x+1)+f(x-2)的定義域是( 。
A、[-2,3]
B、[-1,3]
C、[-1,4]
D、[-3,5]

查看答案和解析>>

同步練習(xí)冊答案