(20分)已知函數(shù)是在上每一點(diǎn)處均可導(dǎo)的函數(shù),若上恒成立。
(1)①求證:函數(shù)上是增函數(shù);
②當(dāng)時(shí),證明:
(2)已知不等式時(shí)恒成立,求證:

解(1)①由,,由可知上恒成立,
從而有上是增函數(shù)。
②由①知上是增函數(shù),當(dāng)時(shí),有
,于是有:
兩式相加得:
(2)由(Ⅰ)②可知:,()恒成立
由數(shù)學(xué)歸納法可知:時(shí),有:
恒成立
設(shè),則,則時(shí),
恒成立
,記
,



將(**)代入(*)中,可知:
于是:

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)是在上每一點(diǎn)均可導(dǎo)的函數(shù),若 在時(shí)恒成立.

(1)求證:函數(shù)上是增函數(shù);

(2)求證:當(dāng)時(shí),有;

(3)請將(2)問推廣到一般情況,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三11月月考文科數(shù)學(xué) 題型:解答題

(20分)已知函數(shù)是在上每一點(diǎn)處均可導(dǎo)的函數(shù),若上恒成立。

(1)①求證:函數(shù)上是增函數(shù);

②當(dāng)時(shí),證明:;

(2)已知不等式時(shí)恒成立,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測試12-文科-算法、復(fù)數(shù)、推理與證明 題型:解答題

 已知函數(shù)是在上每一點(diǎn)均可導(dǎo)的函數(shù),若時(shí)恒成立.

(1)求證:函數(shù)上是增函數(shù);

(2)求證:當(dāng)時(shí),有

(3)請將(2)問推廣到一般情況,并證明你的結(jié)論(不要求證明).

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年度新課標(biāo)高三上學(xué)期數(shù)學(xué)單元測試12-理科-算法、復(fù)數(shù)、推理與證明 題型:解答題

 已知函數(shù)是在上每一點(diǎn)均可導(dǎo)的函數(shù),若時(shí)恒成立.

(1)求證:函數(shù)上是增函數(shù);

(2)求證:當(dāng)時(shí),有;

(3)請將(2)問推廣到一般情況,并證明你的結(jié)論.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案