設(shè)m,n∈N,f(x)=(1+x)m+(1+x)n,
(1)當(dāng)m=n=7時(shí),若f(x)=a7x7+a6x6+a5x5+a4x4+a3x3+a2x2+a1x+a0求a0+a2+a4+a6
(2)當(dāng)m=n時(shí),若f(x)展開(kāi)式中x2的系數(shù)是20,求n的值.
(3)f(x)展開(kāi)式中x的系數(shù)是19,當(dāng)m,n變化時(shí),求x2系數(shù)的最小值.
分析:(1)本題可以應(yīng)用賦值法分別令x=1,x=-1,寫(xiě)出兩個(gè)等式,把兩個(gè)等式相加得到要求的下標(biāo)是偶數(shù)的系數(shù)的和.
(2)寫(xiě)出二項(xiàng)式的展開(kāi)式,根據(jù)當(dāng)m=n時(shí),f(x)展開(kāi)式.中x2的系數(shù)是20,得到T3=2Cn2x2=20x2,求出n的值.
(3)要求一個(gè)系數(shù)的最小值,首先表示出這個(gè)項(xiàng)的系數(shù),根據(jù)m,n之間的關(guān)系,代入系數(shù)的表示式,根據(jù)二次函數(shù)的最值求法得到結(jié)果.
解答:解:(1)本題可以應(yīng)用賦值法:分別令x=1,x=-1,
28=a7+a6+a5+a4+a3+a2+a1+a0
0=-a7+a6-a5+a4-a3+a2-a1+a0
兩個(gè)式子相加得a0+a2+a4+a6=128…(4分)
(2)∵當(dāng)m=n時(shí),f(x)展開(kāi)式中x2的系數(shù)是20,
∴T3=2Cn2x2=20x2,
∴n=5…(8分)
(3)當(dāng)m+n=19,
x2的系數(shù)為:
C
2
m
+
C
2
n
=
1
2
m(m-1)+
1
2
n(n-1)

=
1
2
[(m+n)2-2mn-(m+n)]=171-mn=171-(19-n)n
=(n-
19
2
)2+
323
4

∴當(dāng)n=10或n=9時(shí),f(x)展開(kāi)式中x2的系數(shù)最小為81.…(12分)
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,本題解題的關(guān)鍵是正確利用二項(xiàng)式的展開(kāi)式,本題還結(jié)合二次函數(shù)的性質(zhì),是一個(gè)綜合題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n∈N,f(x)=(1+2x)m+(1+x)n
(Ⅰ)當(dāng)m=n=2011時(shí),記f(x)=a0+a1x+a2x2+…+a2011x2011,求a0-a1+a2-…-a2011;
(Ⅱ)若f(x)展開(kāi)式中x的系數(shù)是20,則當(dāng)m、n變化時(shí),試求x2系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n∈N,f(x)=(1+x)m+(1+x)n
(1)當(dāng)m=n=7時(shí),f(x)=a7x7+a6x6+…+a1x+a0,求a0+a2+a4+a6
(2)若f(x) 展開(kāi)式中 的系數(shù)是19,當(dāng) m,n變化時(shí),求x2系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)m,n∈N,f(x)=(1+x)m+(1+x)n
(1)當(dāng)m=n=7時(shí),f(x)=a7x7+a6x6+…+a1x+a0,求a0+a2+a4+a6
(2)若f(x) 展開(kāi)式中 的系數(shù)是19,當(dāng) m,n變化時(shí),求x2系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省泉州一中高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f'(x)滿足0<f'(x)<1.”
(1)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;
(2)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個(gè)實(shí)數(shù)根;
(3)設(shè)是方程f(x)-x=0的實(shí)數(shù)根,求證:對(duì)于f(x)定義域中任意的x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),|f(x3)-f(x2)|<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案