(2011•南通模擬)若
π4
是函數(shù)f(x)=sin2x+acos2x(a∈R,為常數(shù))的零點(diǎn),則f(x)的最小正周期是
π
π
分析:由f(
π
4
)=sin
π
2
+acos2
π
4
=0,可求得a=-2,于是f(x)=sin2x-2cos2x轉(zhuǎn)化為:f(x)=
2
sin(2x-
π
4
)-1,
從而可求其周期.
解答:解:∵
π
4
是函數(shù)f(x)=sin2x+acos2x(a∈R,為常數(shù))的零點(diǎn),
∴f(
π
4
)=sin
π
2
+acos2
π
4
=0,
∴1+
1
2
a=0,
∴a=-2.
∴f(x)=sin2x-2cos2x
=sin2x-cos2x-1
=
2
sin(2x-
π
4
)-1,
∴f(x)的最小正周期為π.
故答案為:π
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn),由f(
π
4
)=0求得a的值是基礎(chǔ),利用輔助角公式轉(zhuǎn)化是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通模擬)設(shè)函數(shù)f(x)=
2x,                           -2≤x<0
g(x)-log5(x+
5+x2
) ,    0<x≤2
,若f(x)為奇函數(shù),則當(dāng)0<x≤2時(shí),g(x)的最大值是
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通模擬)已知函數(shù)f(x)=ln(x+
x2+1
),若實(shí)數(shù)a,b滿足f(a)+f(b-1)=0,則a+b等于
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通模擬)如圖所示:圖1是定義在R上的二次函數(shù)f(x)的部分圖象,圖2是函數(shù)g(x)=loga(x+b)的部分圖象.
(1)分別求出函數(shù)f(x)和g(x)的解析式;
(2)如果函數(shù)y=g(f(x))在區(qū)間[1,m)上單調(diào)遞減,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•南通模擬)若函數(shù)f(x)=loga(x3-ax)(a>0,a≠1)在區(qū)間(-
1
2
,0)內(nèi)單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
[
3
4
,1)
[
3
4
,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案