已知變量x,y滿足約束條件
y≤2
x+y≥1
x-y≤1
,則z=3x+y的取值范圍是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出可行域,變形目標(biāo)函數(shù),平移直線y=-3x可得結(jié)論.
解答: 解:作出
y≤2
x+y≥1
x-y≤1
所對(duì)應(yīng)的可行域(如圖陰影),
變形目標(biāo)函數(shù)可得y=-3x+z,作出直線y=-3x(紅色虛線),
經(jīng)平移直線知,當(dāng)直線過(guò)點(diǎn)A(-1,2)時(shí),z=3x+y取最小值-1,
當(dāng)直線過(guò)點(diǎn)B(3,2)時(shí),z=3x+y取最大值11,
故z=3x+y的取值范圍為:[-1,11]
故答案為:[-1,11]
點(diǎn)評(píng):本題考查簡(jiǎn)單線性規(guī)劃,準(zhǔn)確作圖是解決問(wèn)題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求棱長(zhǎng)都為a的正四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是雙曲線
x2
4
-y2=1的左右頂點(diǎn),C,D是雙曲線上關(guān)于x軸對(duì)稱(chēng)的兩點(diǎn),直線AC與BD的交點(diǎn)為E.
(1)求點(diǎn)E的軌跡W的方程;
(2)若W與x軸的正半軸,y軸的正半軸的交點(diǎn)分別為M,N,直線y=kx(k>0)與W的兩個(gè)交點(diǎn)分別是P,Q(其中P是第一象限),求四邊形MPNQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司有甲乙兩個(gè)工作部門(mén),假日去不同景點(diǎn)旅游,總共有m人參加,甲部門(mén)平均每人花費(fèi)120元,乙部門(mén)每人花費(fèi)110元,該公司去旅游的總共花去2250元,問(wèn)甲乙兩部門(mén)各去了多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a、m滿足a≤1,0<m≤2
3
,函數(shù)f(x)=
amx-mx2
a+a(1-a)2m2
,x∈(0,a) 若存在a,m,x,使f(x)
3
2
,求所有的實(shí)數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC外接圓的半徑為1,圓心為O,且2
OA
+
AB
+
AC
=0,|
OA
|=|
AB
|,E,F(xiàn)為邊AC的三等分點(diǎn),則
BE
BF
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)與橢圓
x2
25
+
y2
9
=1的焦點(diǎn)相同,若過(guò)右焦點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有兩個(gè)不同的交點(diǎn),則此雙曲線的半實(shí)軸長(zhǎng)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,y>0且滿足
2
x
+
8
y
=1,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把邊長(zhǎng)為1的正方形ABCD沿對(duì)角線折起,使其成為四面體ABCD,則下列命題:
①三棱錐A-BCD體積的最大值為
2
12
;
②當(dāng)三棱錐體積最大時(shí)直線BD和平面ABC所成的角的大小為45°;
③B、D兩點(diǎn)間的距離的取值范圍是(0,
2
);
④當(dāng)二面角D-AC-B的平面角為90°時(shí),異面直線BC與AD所成角為45°;
其中正確的是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案