10.如圖,四棱錐S-ABCD中,底面ABCD是邊長為4的菱形,∠ABC=60°,SA⊥平面ABCD,且SA=4,M在棱SA上,且AM=1,N在棱SD上且SN=2ND.
(Ⅰ)求證:CN∥面BDM;
(Ⅱ)求三棱錐S-BDM的體積.

分析 (Ⅰ)取SA的中點(diǎn)G,連結(jié)NG,CG,連結(jié)AC交BD于O,連結(jié)OM證明平面NGC∥平面BDM.然后證明CN∥面BDM;
(Ⅱ)利用VS-BDM=VS-ABD-VM-ABD,轉(zhuǎn)化求解即可.

解答 (Ⅰ)證明:取SA的中點(diǎn)G,連結(jié)NG,CG,連結(jié)AC交BD于O,連結(jié)OM,
由AM=1,可知:$\frac{SG}{GM}$=$\frac{SN}{ND}$=$\frac{2}{1}$,∴NG∥DM.

又NG?平面BDM,DM?平面BDM,∴NG∥平面BDM,
又因?yàn)镺,M分別AC,AG的中點(diǎn),∴OM∥CG,CG?平面BDM,OM?平面BDM,∴CG∥平面BDM,NG∩CG=G,∴平面NGC∥平面BDM,∵CG?平面NGC,∴CN∥面BDM;
(Ⅱ)解:因?yàn)镾A⊥平面ABCD,AD=AB=4,∠BDA=120°,
所以VS-BDM=VS-ABD-VM-ABD=$\frac{1}{3}×\frac{1}{2}×4×4×sin120°×4-\frac{1}{3}×\frac{1}{2}×4×4×sin120°×1$=4$\sqrt{3}$.

點(diǎn)評(píng) 本題考查直線與平面平行的判定定理以及性質(zhì)定理的應(yīng)用,幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在等差數(shù)列{an}中,已知a4+a6=16,則a2+a8=(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)的圖象如圖所示,f'(x)是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是( 。
A.0<f'(3)<f(3)-f(2)<f'(2)B.0<f'(3)<f'(2)<f(3)-f(2)C.0<f'(2)<f'(3)<f(3)-f(2)D.0<f(3)-f(2)<f'(3)<f'(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD=2AB=2.將梯形ABCD繞AD所在直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x|x-2a|+a2-4a(a∈R).
(Ⅰ)當(dāng)a=-1時(shí),求f(x)在[-3,0]上的最大值和最小值;
(Ⅱ)若方程f(x)=0有3個(gè)不相等的實(shí)根x1,x2,x3,求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一臺(tái)機(jī)器使用時(shí)間較長,但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,如表為抽樣試驗(yàn)結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒)1614128
每小時(shí)生產(chǎn)有
缺點(diǎn)的零件數(shù)y(件)
11985
(1)用相關(guān)系數(shù)r對(duì)變量y與x進(jìn)行相關(guān)性檢驗(yàn);
(2)如果y與x有線性相關(guān)關(guān)系,求線性回歸方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?(結(jié)果保留整數(shù))
參考數(shù)據(jù):$\sum_{i=1}^{4}$xiyi=438,t=m2-1,$\sum_{i=1}^{4}$yi2=291,$\sqrt{656.25}$≈25.62.
參考公式:相關(guān)系數(shù)計(jì)算公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù) f(x)=cos$\frac{π}{3}x$,則 f(1)+f(2)+f(3)+…+f(2016)+f(2017)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}5x+3y≤15\\ y≤x+1\\ x-5y≤3.\end{array}$
(1)求目標(biāo)函數(shù)z=x+y的最大值;
(2)求目標(biāo)函數(shù)z=$\sqrt{{x^2}+{y^2}+6x-6y+18}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓C:x2+y2-6x+8y+24=0關(guān)于直線 l:x-3y-5=0對(duì)稱的圓的方程是( 。
A.(x+1)2+(y+2)2=1B.(x-1)2+(y-2)2=1C.(x-1)2+(y+2)2=1D.(x+1)2+(y-2)2=1

查看答案和解析>>

同步練習(xí)冊(cè)答案