雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線與直線X+2y+1=0垂直,則雙曲線C的離心率為(  )
A、
3
B、
5
2
C、
5
D、
2
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的漸近線方程,再由兩直線垂直的條件,可得,b=2a,再由a,b,c的關(guān)系和離心率公式,即可得到所求.
解答: 解:雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線的方程為
y=±
b
a
x,
由于一條漸近線與直線x+2y+1=0垂直,
則有
b
a
=2,即有b=2a,
c=
a2+b2
=
5
a,
則離心率為e=
c
a
=
5

故選C.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查漸近線方程和離心率的求法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,以F1,F(xiàn)2為焦點(diǎn)的橢圓C,過(guò)點(diǎn)(1,
2
2
),
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)T(2,0),過(guò)點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),且
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,BC=
2
,且PC⊥CD,BC⊥PA,E是PB的中點(diǎn).
(Ⅰ)求證:平面PBC⊥平面EAC;
(Ⅱ)若平面PAC與平面EAC的夾角的余弦值為
3
3
,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=5x+3,則f(1)+f(2)+…+f(30)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+2Sn•Sn-1=0(n≥2,且n∈N),a1=
1
2

(1)求證:{
1
Sn
}是等差數(shù)列;
(2)若bn=Sn•Sn+1,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(t,t+
1
2
)(t>0)上不是單調(diào)函數(shù),求實(shí)數(shù)t的取值范圍;
(III)如果當(dāng)x≥1時(shí),不等式f(x)≥
a
x+1
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊經(jīng)過(guò)點(diǎn)P(-4,3),
(1)求
sin(π-α)+cos(-α)
tan(π+α)
的值;      
(2)求sinαcosα+cos2α-sin2α+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,有命題“若m+n=p+q,則an+am=ap+aq”在等比數(shù)列{bn}中,你得出的類似命題是“若
 
,則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x),g(x)滿足下列條件:(1)f(-1)=-1,f(0)=0,f(1)=1.(2)對(duì)任意實(shí)數(shù)x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1-x2),則當(dāng)n>2,n∈N*時(shí),[f(x)]n+[g(x)]n的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案