【題目】四棱錐P-ABCD的底面是邊長為2的正方形,PA⊥平面ABCD,E,F分別為線段AB,BC的中點.
(1)線段AP上一點M,滿足,求證:EM∥平面PDF;
(2)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
【答案】(1)見解析(2)
【解析】
(1)建立空間直角坐標(biāo)系,利用·=0,即可證明EM∥平面PDF;
(2)求出平面PDF和平面PAD的一個法向量,利用向量的夾角公式,即可求解二面角的余弦值.
(1)由題意,以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
設(shè)PA=a,則A(0,0,0),M(0,0,),P(0,0,a),F(2,1,0),D(0,2,0),
E(1,0,0),所以=(-1,0,),=(2,1,-a),=(0,2,-a),
設(shè)平面PDF的法向量=(x,y,z),
則,取z=2,得=(,a,2),
∵·=-+2×=0,EM平面PDF,∴EM∥平面PDF.
(2)因為PB與平面ABCD所成的角為45°,可得PA=AB=2,
所以P(0,0,2),D(0,2,0),F(2,1,0),
所以=(0,2,-2),=(2,1,0),
設(shè)平面PDF的法向量為=(x,y,z),
則,取y=1,得=(,1,1),
又由平面PAD的法向量=(1,0,0),
設(shè)二面角A-PD-F的平面角為θ,則,
∴二面角A-PD-F的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)的內(nèi)角的對應(yīng)邊分別為,且,若向量與向量共線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線城市 | 一線城市 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
附表:
由算得,,
參照附表,得到的正確結(jié)論是
A. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C. 有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D. 有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a=(sinx,cosx),b=(sinx,sinx),f(x)=2a·b.
(1)求f(x)的最小正周期和最大值;
(2)若g(x)=f(x),x∈,畫出函數(shù)y=g(x)的圖象,討論y=g(x)-m(m∈R)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個班中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分?jǐn)?shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(Ⅱ)現(xiàn)從上述樣本“成績不優(yōu)秀”的學(xué)生中,抽取人進(jìn)行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個說法:
①殘差點分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越小
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)的值越大,說明擬合的效果越好;
③在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量平均增加個單位;
④對分類變量與,若它們的隨機(jī)變量的觀測值越小,則判斷“與有關(guān)系”的把握程度越大.
其中正確的說法是
A. ①④B. ②④C. ①③D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】CPI是居民消費價格指數(shù)(consumer price index)的簡稱.居民消費價格指數(shù),是一個反映居民家庭一般所購買的消費品價格水平變動情況的宏觀經(jīng)濟(jì)指標(biāo).右圖是根據(jù)統(tǒng)計局發(fā)布的2018年1月—7月的CPI 同比增長與環(huán)比增長漲跌幅數(shù)據(jù)繪制的折線圖.(注:2018 年2月與2017年2月相比較,叫同比;2018年2 月與2018年1月相比較,叫環(huán)比)根據(jù)該折線圖,則下列結(jié)論錯誤的是( )
A. 2018年1月—7月CPI 有漲有跌
B. 2018年2月—7月CPI 漲跌波動不大,變化比較平穩(wěn)
C. 2018年1月—7月分別與2017年1月一7月相比較,1月CPI 漲幅最大
D. 2018年1月—7月分別與2017年1月一7月相比較,CPI 有漲有跌
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點P(3,4)
(1)它在y軸上的截距是在x軸上截距的2倍,求直線l的方程.
(2)若直線l與軸,軸的正半軸分別交于點,求的面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com