分析 由已知條件利用公式an=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$求解.
解答 解:當(dāng)n=1時(shí),a1=S1=3+1=4,
當(dāng)n≥2時(shí),an=Sn-Sn-1=3n+1-(3n-1+1)=2×3n-1,
又2×31-1=2≠4,
所以an=$\left\{\begin{array}{l}{4,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$,
故答案為;$\left\{\begin{array}{l}{4,n=1}\\{2×{3}^{n-1},n≥2}\end{array}\right.$
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,是基礎(chǔ)題,角題時(shí)要認(rèn)真審題,注意公式的靈活運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥2 | B. | a>2 | C. | a<2 | D. | a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com